
ON THE DERIVATION OF A STOKES-BRINKMAN PROBLEM FROM STOKES

EQUATIONS AROUND A RANDOM ARRAY OF MOVING SPHERES
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Abstract. We consider the Stokes system in R3, deprived of N spheres of radius 1/N, completed by constant

boundary conditions on the spheres. This problem models the instantaneous response of a viscous fluid to an
immersed cloud of moving solid spheres. We assume that the centers of the spheres and the boundary conditions
are given randomly and we compute the asymptotic behavior of solutions when the parameter N diverges. Under

the assumption that the distribution of spheres/centers is chaotic, we prove convergence in mean to the solution
of a Stokes-Brinkman problem.
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1. Introduction

This paper is a contribution to a rigorous justification of mesoscopic models for the motion of a cloud of solid
particles in a viscous fluid. As explained in [7], the modeling of particle suspensions can borrow to different areas
of partial differential equations. If the cloud contains few particles, the behavior of particles can be modeled by
a finite dimensional system and the coupling with the fluid equations yields a fluid/solid problem similar to the
ones studied in [5, 6, 11, 23] for example. If the number of particle increases, a description of the particle phase
via its individuals seems irrelevant. Depending on the volume fraction of the particle phase it is then necessary
to turn to a kinetic/fluid description (as in [2] or [3]) or a multiphase description (see [16]).

In the case of a kinetic/fluid description, a system – that we can find in references – is the following
Vlasov–Navier-Stokes system:

∂tf + v · ∇xf + 6π divv[(u− v)f ] = 0 ,

(∂tu+ u · ∇xu) = ∆xu−∇xp− 6π

ˆ
R3

f(u− v) dv ,

divxu = 0 .

Here we introduce f : (t, x, v) ∈ [0,∞)× R3 × R3 → [0,∞) the particle distribution function which counts the
proportion of particles at time t which are in position x ∈ R3 and have velocity v ∈ R3. This unknown encodes
the cloud behavior. We emphasize that v is a parameter of f, hence the notations with indices to express
with respect to which variable we differentiate. The two other unknowns (u, p) represent respectively the fluid
velocity-field and pressure. One recognizes in the two last equations Navier-Stokes like equations. For simplicity,
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we do not include physical parameters such as the fluid density and viscosity. A particular feature of this model
is the supplementary term

(1.1) 6π

ˆ
R3

f(u− v) dv ,

that appears on the right-hand side of the momentum equation. It is supposed to model the exchange of
momentum between the solid phase and the fluid. As emphasized in [1] this supplementary term occurs when
the product ”number of particles” times ”radius of particles” is of order 1. The explicit form above can be
justified with the following formal reasoning. Assume that the cloud is made of N identical spheres of radius
1/N. If the particles are sufficiently spaced, they interact with the fluid as if they where alone: at its own scale,
the particle i moves with its velocity vi in a viscous fluid whose velocity at infinity is u(hi). Stokes’ law entails
that fluid viscosity is responsible of the drag force:

Fi =
6π

N
(vi − u(hi)).

This term corresponds to the forcing term in the Vlasov equation and the corresponding term (1.1) in the
Navier-Stokes system is obtained by assuming that the forces induced by the N particles can be superposed.

We are interested here in a rigorous approach to the above formal reasoning. This supposes to start from the
fluid/solid problem, where the particle dynamics equations are solved individually, and let the number of particles
diverge with their radius and density given by a suitable scaling. This question mixes large particle system
problems (justification of the Vlasov equations starting from a system of ODEs) with fluid homogenization issues
(computing a macroscopic equation for the fluid unknowns). The full problem seeming still out of reach now,
we focus here on the fluid homogenization part. Namely, one assumes that the particle behavior is given and
wants to compute the new term in the fluid equation which takes into account the influence of the particles.
Since this term is due to fluid viscosity, we restrict to the Stokes system (i.e. the system obtained by neglecting
the full time derivative on the left hand side of the momentum fluid equation). Then, the problem reduces to
homogenizing the Stokes problem in a perforated domain with non-zero boundary conditions (mimicking the
particle translation). This particular homogenization problem has been the subject of recent publications (see
[8, 13, 15, 19]). Therein, the limit Stokes system including the Brinkman term (1.1) is obtained under specific
dilution assumption of the particle phase. One further step toward tackling the time-dependent problem is then
to discuss whether the set of favorable configurations – i.e. such that the Brinkman term (1.1) appears in the
limit – is sufficiently large. To this end, we propose here to derive the Stokes-Brinkman problem via a Liouville
approach in the spirit of [20]. More precisely, we first pick at random N identical spherical particles/obstacles
of radius 1/N , each of them being characterized by its center of mass and its velocity, under the constraint
that particles do not intersect each other. We assume that the cloud of particles lies within a bounded open
subset Ω0 of R3. We then consider a fluid occupying the whole space R3 deprived of these particles and satisfying
a stationary Stokes equation with Dirichlet boundary condition at the boundary of each particle given by its
velocity. Our aim is to rigorously derive the Stokes-Brinkman equation as an effective equation of the above
problem in the limit N →∞.

Let us describe the problem in details. To begin with, fix N ∈ N∗ arbitrary large and consider the experiment
of dropping randomly N spheres of radius 1/N in the whole space R3. Since the radius of the spheres is very
small in comparison with their number (note that the volume fraction occupied by the spheres is typically of size
1/N2), we adapt a model that is classical for large point-particle systems. We denote

ON :=
{

((XN
1 , V

N
1 ), . . . , (XN

N , V
N
N )) ∈ [R3 × R3]N s.t. |XN

i −XN
j | >

2

N
∀ i 6= j

}
.

This represents the set of admissible configurations for the centers of mass XN = (XN
1 , . . . , X

N
N ) and velocities

VN = (V N1 , . . . , V NN ). In what follows, we also denote Zi = (Xi, Vi) the state variable for the particle i and
keep bold symbols for N -component entities. For instance, we denote ZN = ((XN

1 , V
N
1 ), . . . , (XN

N , V
N
N )) ∈ ON a

configuration.

The configuration of particles ZN will be chosen at random under some law FN ∈ P(ON ), where we denote by
P(E) the space of probability measures on E. We assume that this probability measure is absolutely continuous
w.r.t. the Lebesgue measure and also denote by FN its density. Moreover, since the particles are indistinguishable,
we shall assume that ZN is an exchangeable random variable, which means that its law FN is symmetric, that
is, for any permutation σ ∈ SN there holds

FN (ZN1 , . . . , Z
N
N ) = FN (ZNσ(1), . . . , Z

N
σ(N)), ∀ZN ∈ ON .
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Given a configuration ZN = ((XN
1 , V

N
1 ), . . . , (XN

N , V
N
N )) ∈ ON we introduce the perforated domain:

FN = R3 \
N⋃
i=1

BNi , where BNi = B(XN
i ,

1
N ) ∀ i = 1, . . . , N,

and consider the following Stokes problem:

(1.2)

{
−∆u+∇p = 0

div u = 0
in FN ,

with boundary conditions

(1.3)
u(x) = V Ni on ∂BNi for i = 1, . . . , N,

lim
|x|→∞

|u(x)| = 0.

We obtain a stationary exterior problem in 3 dimensions. Such systems are extensively studied in [10, Section V]
where it is proven for instance that there exists a unique solution (u, p) to (1.2)-(1.3). We may then construct:

u[ZN ](x) =

{
u(x), if x ∈ FN

V Ni , if x ∈ BNi for i = 1, . . . , N.

The above reference on the exterior problem entails that u[ZN ] ∈ Ḣ1(R3) (where we denote Ḣ1(R3) the closure
of C∞c (R3) for the L2-norm of the gradient). Therefore, we construct the mapping

(1.4)
UN : ON −→ Ḣ1(R3)

ZN 7−→ u[ZN ]

as a random variable on ON endowed with the probability measure FN .

At first in [8], it is shown that, for a given sequence ZN satisfying some conditions and with prescribed
asymptotic behavior when N → ∞, the associated solutions to (1.2)-(1.3) converge to a solution to the
Stokes-Brinkman problem:

(1.5)

{
−∆ũ+∇p̃+ 6πρũ = 6πj

div ũ = 0
in R3,

with vanishing condition at infinity

(1.6) lim
|x|→∞

|ũ(x)| = 0.

In this system the flux j and density ρ are related to the asymptotic behavior of the ZN . In this paper, we
compute the flux j and density ρ depending on the asymptotic behavior of the law FN in order that the
expectation of UN converges in a suitable sense to the same Stokes-Brinkman problem. As we recall in the
beginning of Section 4, this system is well-posed for positive ρ ∈ L3/2(R3) and j ∈ L6/5(R3).

1.1. Main result. Our main result requires some conditions on the sequence of symmetric probability measures
(FN )N∈N∗ on ON . To state our conditions, we introduce the family of sets Om[R] for an integer m ≥ 2 and
R > 0 as defined by:

Om[R] =
{

((X1, V1), . . . , (Xm, Vm)) ∈ [R3 × R3]m s.t. |Xi −Xj | > 2R ∀ i 6= j
}
.

We note that we have then ON = ON [ 1
N ] in particular. Then, the m-th marginal of FN is given by

FNm (z) =

ˆ
R6(N−m)

1(z,z′)∈ONF
N (z, z′)dz′, ∀ z ∈ Om[ 1

N ].

Such marginals are constructed by remarking that, if we split an N−particle distribution by giving the m
first particle state z and the remaining (N −m) particle state z′ we must require that z ∈ Om[ 1

N ] in order

that (z, z′) ∈ ON be possible. We apply here again with small letters the convention that zi ∈ R6 splits into
zi = (xi, vi) and that bold symbols encode vectors of unknowns x, v or z.

We are now able to state our main assumptions. Let (ZN )N∈N∗ be a sequence of exchangeable ON -valued
random variables, and let (FN )N∈N∗ be the sequence of their associated laws, that is, symmetric probability
measures on ON .

Assumption A1. We assume that (FN )N∈N∗ are distribution functions, that is belong to L1(ON ), and satisfy
the following properties:
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(0) Supp(FN ) ⊂ (Ω0 × R3)N , for some bounded open Ω0 ⊂ R3 and any N ∈ N∗.

(1) There exists a constant C1 ≥ 1 such that for any N ∈ N∗ and 1 ≤ m ≤ N

‖FNm ‖L∞x L1
v(Om[ 1

N ]) := sup
x∈R3m

ˆ
R3m

1z∈Om[ 1
N ] F

N
m (z) dv ≤ (C1)m.

(2) There exists k0 ≥ 5 and a constant C2 > 0 such that

sup
N∈N∗

‖|z1|k0FN1 ‖L1
xL

1
v(R3×R3) = sup

N∈N∗

ˆ
R3×R3

|z1|k0FN1 (z1) dz1 ≤ C2.

(3) There exists a constant C3 > 0 such that

sup
N∈N∗

‖|v1|FN2 ‖L∞x L1
v(O2[ 1

N ]) = sup
N∈N∗

sup
x1,x2

ˆ
R6

1(z1,z2)∈O2[ 1
N ] |v1|FN2 (z1, z2) dv1dv2 ≤ C3.

In this set of assumptions, (2) corresponds to the classical assumption that the law has a sufficient number of
bounded moments; (1) would be satisfied in particular by tensorized laws; (0) is reminiscent of the fact that the
cloud occupies the bounded region Ω0 and (3) shall enable to control the interactions between close particles
through the flow.

Given a sequence (ZN )N∈N∗ of exchangeable random variables on ON , we define the associated empirical
measure by

(1.7) µN [ZN ] :=
1

N

N∑
i=1

δZNi ,

as well as the empirical density and the empirical flux respectively by

(1.8) ρN [ZN ] = ρN [XN ] :=
1

N

N∑
i=1

δXNi , jN [ZN ] :=
1

N

N∑
i=1

V Ni δXNi .

The first formula defines a standard probability measure while the second one is a vectorial measure on R3.

We now state our assumptions concerning the asymptotic behavior of the sequence of configurations.

Assumption A2. Under Assumption A1, we suppose that there is a probability measure f on R3 × R3 with
support on Ω0 ×R3 such that, defining the probability measure ρ(dx) =

´
R3 f(dx, dv) and the vectorial measure

j(dx) :=
´
R3 vf(dx, dv) (both with support on Ω0), we have:

(i) lim
N→∞

E
[
W1(ρN [ZN ], ρ)

]
= 0;

(ii) lim
N→∞

E
[
‖jN [ZN ]− j‖[C0,1

b (R3)]∗

]
= 0.

We denote here W1 for the Wasserstein distance (with cost c(x, y) = |x− y|) and ‖ · ‖C0,1
b (R3)]∗ for the dual

norm of Lipschitz bounded functions on R3 (see Section 2 below).

Remark 1. Given the random variable ZN with law FN , we can consider the random variable XN on ONx :=
{(XN

1 , . . . , X
N
N ) ∈ R3N | |XN

i − XN
j | > 2

N ∀ i 6= j} which has a symmetric law RN ∈ P(ONx ), given by

RN (dxN ) =
´
R3N F

N (dxN ,dvN ). Point (i) in Assumption A2 is equivalent to the fact that the sequence

(RN )N∈N∗ is ρ-chaotic (roughly speaking that RN is asymptoticly i.i.d. with law ρ, see Definition 2.1) thanks to
e.g. [12].

Remark 2. We will be interested in conditions on the sequence (FN )N∈N∗ in order to ensure the convergences
of Assumption A2. In particular we will show in Lemma 2.3 that if the sequence (FN )N∈N∗ is f -chaotic (see
Definition 2.1) then it satisfies Assumption A2. (But clearly this is not a necessary condition.)

With these notations, our main theorem reads:

Theorem 1.1. Let f ∈ L1(R3 × R3) be a probability measure having support in Ω0 × R3 and define ρ(x) =´
R3 f(x, v) dv and j(x) =

´
R3 vf(x, v) dv. Assume that ρ ∈ L3(Ω0) and j ∈ L6/5(Ω0) so that there exists a unique

solution (u, p) ∈ Ḣ1(R3)×L2(R3) to the Stokes-Brinkman problem (1.5)-(1.6) associated to ρ and j. Consider a
sequence of exchangeable random variables (ZN )N∈N∗ on ON and their associated symmetric laws (FN )N∈N∗

satisfying Assumption A1.
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Then, given α ∈ (2/3, 1) and for N large enough, the map UN given by (1.4) satisfies:

(1.9) E
[
‖UN [ZN ]− u‖L2

loc(R3)

]
. E

[
W1(ρN [ZN ], ρ)

] 1
57 + E

[
‖jN [ZN ]− j‖[C0,1

b (R3)]∗

] 1
3

+N−e1(α),

where e1(α) = min( 1−α
95 , (3α−2)

2 ).

As a consequence, if (FN )N∈N∗ satisfies moreover Assumption A2 (i)-(ii), then

lim
N→∞

E
[
‖UN [ZN ]− u‖L2

loc(R3)

]
= 0.

A key-point in the result of this theorem is that the right-hand side of (1.9) depends on powers of

E
[
W1(ρN [ZN ], ρ)

]
and E

[
‖jN [ZN ]− j‖[C0,1

b (R3)]∗

]
, and on a residual power of N (depending only on the

parameter α). We remark that both densities and flux differences estimates in (1.9) are in fact estimates of the
same type, since here, for probability measures such as the densities, the Wasserstein distance W1 is equivalent
to the distance given by the [C0,1

b (R3)]∗-norm. However, the fluxes jN [ZN ] and j are not probability measures
(they do not even share the same mass a priori) so that W1 is not a distance. We emphasize that the explicit
values of our exponents need not be optimal in all contexts and that it is also possible to obtain a Lp version of
estimate (1.9) with different exponents, under the condition that W 2,p embeds into some Hölder space.

A further result of our study (see Section 3), is that, with the assumptions of Theorem 1.1, E[UN [ZN ]] defines

a bounded sequence in Ḣ1(R3). Theorem 1.1 then implies that this sequence converges (at least weakly in

Ḣ1(R3)) to the solution to the Stokes-Brinkmann problem with the corresponding flux j and density ρ. This
consequence is yet another hint that the Stokes-Brinkman problem (1.5)-(1.6) is indeed the right macroscopic
model to compute the behavior of a viscous fluid in presence of a cloud of moving particles under the asymptotic
convergences of Assumption A2.

To show one application of the previous theorem, we shall construct an explicit example of probability
measure on ON satisfying the assumptions of Theorem 1.1 and for which we obtain a quantitative estimate of
the convergence (1.9).

Corollary 1.2. Let f ∈ L1(R3×R3) be a probability measure satisfying the hypotheses of Theorem 1.1 and such
that the associated density ρ ∈ L∞(Ω0) and

´
Ω0×R3 |v|kf(dz) for some k ≥ 5. Then we can construct a sequence

of symmetric probability measures (FN )N∈N∗ on ON satisfying Assumptions A1 and A2, and for which there
holds

E
[
‖UN [ZN ]− u‖L2

loc(R3)

]
. N−

1
171 +N−e1(α).

On the basis of computations in [15], we expect that the content of Theorem 1.1 can be extended to particles
with arbitrary shapes and possibly rotating. We recall that, in this framework, the limit Stokes-Brinkman
problem is related to the distribution of shapes for the particles in the cloud, that is quantified in terms of Stokes
resistance matrix associated with these shapes. The particle rotations influence the effective model only via their
contribution to the drag force exerted on the particles. We refer to [15] for more details.

1.2. Overview of the proof. The proof of Theorem 1.1 faces several difficulties. First, for fixed N , we must
identify a sufficiently large set of data ZN for which the solution UN [ZN ] to the Stokes problem in the punctured
domain is close to the solution to the Stokes-Brinkman problem. In comparison with [8], a key-difficulty is
to have a quantified estimate at-hand. A second difficulty is that, since the velocities V Ni that we impose

on the particles are arbitrary, the solution to the Stokes problem may diverge in Ḣ1(R3) when two particles
become close. It is then necessary to obtain a bound on the solution to the Stokes problem associated with these
configurations in order to ensure that they won’t perturb the computation of the limit in mean.

Having in mind these two important difficulties, we propose an approach that is divided into five steps that
we explain in more details below:

• As a first step, we prove in Section 2.1 some estimates associated to the convergence of the sequence of
configurations (the random variables (ZN )N and their laws (FN )N ) with respect to the expected limit
(the marginals ρ and j of the distribution f).

• We then identify some “concentrated configurations” and prove that they are negligible in the asymptotic
limit N →∞. These configurations correspond to ZN ∈ ON such that there exists a couple of particles
too close to each other or that there exist too many particles in a same cell of small volume. This is
done in Section 2.2.
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• Furthermore, we compute uniform estimates satisfied by the map UN [ZN ]. We obtain simultaneously
that:

– the mean of UN [ZN ] is well-defined and uniformly bounded in Ḣ1(R3);
– the weight of contribution of the concentrated configurations vanishes when N →∞.

This enables to get rid of concentrated configurations in the asymptotic description of UN . This step is
treated in Section 3.

• In a further step, developed in Section 4, we prove a mean-field result for non-concentrated configurations
which is the cornerstone of our proof. We combine here the duality method of [19] with covering
arguments of [13]. In comparison with these previous references, we consider in this paper an unbounded
container. So, these arguments need to be adapted carefully.

• Finally, in the last step presented in Section 5, we gather previous estimates together in order to obtain
Theorem 1.1. Furthermore, we construct a particular example of sequence of probability measures
(FN )N in order to obtain Corollary 1.2.

The paper ends with a series of appendices. In Appendix A are gathered the technical computations underlying
the third step of the above analysis (corresponding to Section 3). In Appendix B, we give some material on the
resolution of the Stokes problem in a punctured box. These results are used in Section 4. Finally, in the last
Appendix C we provide also some computations of constants that are involved in Section 4.

Notations. In this paper, we shall denote A . B if there is some constant C > 0 (insignificant to our
computation) such that A ≤ CB. We use the classical notations Lp(O) and Hm(O) for Lebesgue and Sobolev

spaces. The space Ḣ1(R3) will play a crucial role in the analysis. We recall that we can see this space as the
closure of C∞c (R3) for the norm

‖w‖Ḣ1(R3) =

(ˆ
R3

|∇w|2
) 1

2

, ∀w ∈ C∞c (R2).

We also apply below constantly the Bogovskii operator [10, Section III.3]. We recall that this operator is
constructed to lift a divergence. Namely, given f ∈ Lp(O) it creates (under some compatibility conditions on f)
a vector-field w ∈W 1,p(O) such that divw = f. Concerning the homogeneity properties of this operator we refer
to [13, Appendix A] among others.

Acknowledgments. K.C. thanks N. Fournier for fruitful discussions on empirical measures. K.C. was partially
supported by the EFI project ANR-17-CE40-0030 and the KIBORD project ANR-13-BS01-0004 of the French
National Research Agency (ANR). M.H. is supported by the IFSMACS project ANR-15-CE40-0010, the Dyficolti
project ANR-13-BS01-0003-01.

2. Properties of the sequence of configurations

In this section we gather some properties of the sequence of configurations (ZN )N∈N∗ on ON under the
sequence of associated laws (FN )N∈N∗ satisfying Assumptions A1. We recall that

(2.1) ON :=
{

ZN ∈ (R3 × R3)N | |Xi −Xj | >
2

N
∀i 6= j

}
,

where hereafter we shall use the Assumption A1-(0) saying that Supp(FN ) ⊂ Ω0 × R3 for some bounded open
set Ω0 ⊂ R3, and where we denote

ZN = (Z1, . . . , ZN ) ∈ (R3 × R3)N ,

XN = (X1, . . . , XN ) ∈ R3N , VN = (V1, . . . , VN ) ∈ R3N ,

Zi = (Xi, Vi) ∈ R3 × R3.

We shall denote by ONx the projection of the space of configurations ON onto the XN -variables, more precisely

ONx :=
{

(X1, . . . , XN ) ∈ R3N | |Xi −Xj | >
2

N
∀i 6= j

}
,

in such a way that ON ' ONx × R3N .

In the first part of this section, we focus on the convergence of the family of measures (ρN [ZN ])N∈N∗ and
(jN [ZN ])N∈N∗ seen as random variables. As mentioned in the introduction, we metrize the convergence of
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measures on R3 by two different topologies: either we see (by restriction) vectorial measures as bounded linear
forms on Hölder spaces:

C0,θ
b (R3) :=

{
ϕ ∈ C(R3) ∩ L∞(R3) , s.t. sup

x 6=y

|f(x)− f(y)|
|x− y|θ

<∞

}
,

or we use the (Monge-Kantorovich-)Wasserstein W1-distance on probability measures. Hereafter, the 1-
Wasserstein distance W1(f, g), with f and g probability measures on R3 × R3, is defined by (see e.g. [24])

(2.2) W1(g, f) := inf
π∈Π(g,f)

ˆ
(R3×R3)2

|z − z′|dπ(z, z′) = sup
[ψ]Lip≤1

ˆ
R3×R3

ψ(z) (g(dz)− f(dz)) ,

with Π(g, f) being the set of probability measures on (R3 × R3)2 whose first marginal equals g and second
marginal f , and [·]Lip denotes the Lipschitz semi-norm

[ψ]Lip := sup
z 6=z′

|ψ(z)− ψ(z′)|
|z − z′|

.

Correspondingly, [·]C0,θ with 0 < θ ≤ 1 stands for the C0,θ semi-norm

[ψ]C0,θ := sup
z 6=z′

|ψ(z)− ψ(z′)|
|z − z′|θ

.

and ‖ · ‖C0,θ
b (R3) := ‖ · ‖L∞(R3) + [·]C0,θ the C0,θ-norm. We then define, for finite signed measures m and m̄ in

R3, the dual metric ‖ · ‖(C0,θ
b (R3))∗ by

(2.3) ‖m− m̄‖(C0,θ
b (R3))∗ := sup

‖φ‖
C

0,θ
b

(R3)
≤1

ˆ
R3

φ(z) (m(dz)− m̄(dz)) .

Finally, for vectorial measures j = (jα)1≤α≤3 and j̄ = (j̄α)1≤α≤3 in R3, we define

(2.4) ‖j − j̄‖(C0,θ
b (R3))∗ :=

3∑
α=1

‖jα − j̄α‖(C0,θ
b (R3))∗ .

We remark here that, when dealing with probability measures ρ, ρ̄ ∈ P(R3) with support included in Ω0, the

W1 distance between ρ and ρ̄ is equivalent to the dual distance given by the C0,1
b -norm of their difference, and

we shall always use the former, which is of more common use.

In the second part of this section, we measure the weights of configurations in which the particles are
concentrated, meaning that the minimal distance between two particles is small or that there are too many
particles in a small subset of R3.

2.1. On the convergence Assumption A2. Let us describe some properties concerning the asymptotic
convergence of the data, where we always assume that Assumption A1 is in force. We first obtain some estimates
for different metrics concerning the convergences of Assumption A2, and then we give a sufficient condition on
the sequence (FN )N∈N∗ to satisfy Assumption A2.

We recall below the notion of chaoticity for a sequence of probability measures, see [18, 22].

Definition 2.1. Let E ⊂ Rd. Consider a sequence (YN )N∈N∗ of exchangeable random variables on EN and the
associated sequence of laws (πN )N∈N∗ , that are symmetric probability measures on EN . We say that (πN )N∈N∗

(or that (YN )N∈N∗) is π-chaotic, for some probability measure π on E, if one of the following equivalent
conditions is fulfilled:

(a) πNm converges to π⊗m weakly in P(Em) as N →∞ for any fixed m ≥ 1 (or some m ≥ 2);

(b) the P(E)-valued random variable µN [YN ] converges in law to π as N →∞.

Here πNm denotes the m-marginal of πN given by πNm(dz1, . . . , dzm) :=
´
EN−m

πN (dz1, . . . , dzm, dzm+1, . . . , dzN ),

and µN [YN ] = 1
N

∑N
i=1 δY Ni is the empirical measure associated to YN .

We remark that [12] obtains a quantitave version of the above equivalence. More precisely, assuming that πN1
possesses a finite moment of order k > 1, (πN )N∈N∗ is π-chaotic is equivalent to

(a’) lim
N→∞

W1(πNm , π
⊗m) = 0 for any fixed m ≥ 1 (or some m ≥ 2);
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(b’) lim
N→∞

E
[
W1(µN [YN ], π)

]
= 0;

with a quantitative estimate in N for the equivalence between (a’) and (b’). As a consequence of this, and
arguing similarly for the case of finite vectorial measures (more precisely for finite signed measures, corresponding
to each component of jN [ZN ] and j), we hence remark that Assumption A2 is equivalent to

(i’) the random variable ρN [ZN ] converges in law to ρ as N →∞ ;
(ii’) the random variable jN [ZN ] converges in law to j as N →∞.

We now give some estimates concerning different metrics. For any k > 0 and any probability measure
f ∈ P(R3 × R3) with support on Ω0 × R3, we denote its moment of order k > 0 by

Mk(f) :=

ˆ
Ω0×R3

(1 + |v|2)k/2 f(dx, dv).

We remark that Mk(f) ≥ 1 for any k > 0 and k 7→ Mk(f) is non-decreasing. On the other hand, under the
Assumption A1-(2), we have a uniform bound for (Mk0(FN ))N∈N∗ . So, below, we focus on probability measures
with bounded k0-momentum i.e.:

Bk0(C2) := {f ∈ P(R3 × R3) s.t. Supp(f) ⊂ Ω0 × R3 and Mk0(f) ≤ C2}

where k0 ∈ [1,∞) and C2 ≥ 1 are fixed by Assumption A1-(2). Standard arguments show that this set is closed
w.r.t. the weak topology on P(R3 × R3).

Lemma 2.2. Let f, g ∈ Bk0(C2) and define ρf =
´
R3 f(·,dv), ρg =

´
R3 g(·,dv), jf =

´
R3 vf(·,dv) and

jg =
´
R3 vg(·,dv). Given k > 0 we denote Mk := Mk(f) +Mk(g) and K0 > 0 a constant depending on Ω0.

(1) For any θ ∈ (0, 1) there holds

‖ρf − ρg‖(C0,θ
b (R3))∗ ≤ K0W1(ρf , ρg)

θ
θ+1 ≤ K0W1(f, g)

θ
θ+1 .

(2) For any θ ∈ (0, 1) there holds

‖jf − jg‖(C0,θ
b (R3))∗ ≤ K0‖jf − jg‖

θ
θ+1

(C0,1
b (R3))∗

. K0M
1
k0

θ
(θ+1)

k0
W1(f, g)

(k0−1)
k0

θ
(θ+1) .

Proof. These estimates are standard but we give the proof here for completeness.

(1) We prove first that

(2.5) ‖ρf − ρg‖(C0,θ
b (R3))∗ .W1(ρf , ρg)

θ
θ+1 ,

from which we conclude by remarking that

(2.6) W1(ρf , ρg) .W1(f, g).

Recall that

‖ρf − ρg‖(C0,θ
b (R3))∗ = sup

‖φ‖
C

0,θ
b

(R3)
≤1

ˆ
Ω0

φ(x)(ρf (dx)− ρg(dx)).

We consider a sequence of mollifiers (ζε)ε>0, that is, ζε(x) = ε−3ζ(ε−1x), ζ ∈ C∞c (R3) nonnegative,
´
ζ(x) dx = 1,

and supp(ζ) ⊂ B(0, 1). We splitˆ
R3

φ(x)(ρf − ρg)(dx) =

ˆ
R3

(φ ∗ ζε)(x)(ρf − ρg)(dx) +

ˆ
R3

[φ(x)− (φ ∗ ζε)(x)](ρf − ρg)(dx)

=: T1 + T2.

For the term T2, we easily remark that

φ(x)− (φ ∗ ζε)(x) =

ˆ
R3

[φ(x)− φ(x− y)]ζε(y) dy ≤ [φ]C0,θ

ˆ
R3

|y|θζε(y) dy ≤ [φ]C0,θ εθ.

Hence the previous estimate yields

T2 ≤ ‖φ− (φ ∗ ζε)‖L∞(R3)

ˆ
R3

(ρf + ρg)(dx) . ‖φ‖C0,θ
b (R3) ε

θ.
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For the term T1 we observe that x 7→ (φ ∗ ζε)(x) lies in Lip(R3), indeed, for any x ∈ R3, we have

|∇x(φ ∗ ζε)(x)| = |(φ ∗ ∇xζε)(x)| ≤
ˆ
R3

|φ(x− y)| |∇xζ(y/ε)|
ε4

dy

≤
ˆ
R3

|φ(x− εw)| |∇ζ(w)|
ε

dw

. ε−1‖φ‖L∞(R3)‖∇xζ‖L1(R3),

which implies [φ ∗ ζε]Lip . ε−1‖φ‖L∞(R3). From that last estimate we get

T1 . [φ ∗ ζε]Lip

ˆ
R3

φ ∗ ζε(x)

[φ ∗ ζε]Lip
(ρf − ρg)(dx)

. ε−1‖φ‖L∞(R3) sup
[ψ]Lip≤1

ˆ
R3

ψ(x)(ρf − ρg)(dx) = ε−1‖φ‖L∞(R3)W1(ρf , ρg),

Gathering previous estimates and choosing ε = W1(ρf , ρg)
1
θ+1 completes the proof of (2.5). We now easily prove

(2.6) by remarking that

W1(ρf , ρg) = sup
[ψ]Lip≤1

ˆ
R3

ψ(x)(ρf − ρg)(dx) = sup
[ψ]Lip≤1

ˆ
R3×R3

ψ(x)(f − g)(dxdv)

≤ sup
[Ψ]Lip≤1

ˆ
R3×R3

Ψ(x, v)(f − g)(dx, dv) = W1(f, g).

(2) By reproducing mutatis mutandis the arguments for (2.5) we obtain

(2.7) ‖jf − jg‖(C0,θ
b (R3))∗ . ‖jf − jg‖

θ
θ+1

(C0,1
b (R3))∗

.

So we prove next

(2.8) ‖jf − jg‖(C0,1
b (R3))∗ .M

1
k0

k W1(f, g)
k0−1
k0 .

For R ≥ 1 we define the smooth cutoff function χR(v) = χ(v/R) with χ ∈ C∞c (Rd) nonnegative and 1B(0,1) ≤
χ ≤ 1B(0,2), and we write, denoting jf = (jαf )1≤α≤3 and jg = (jαg )1≤α≤3, for any α ∈ {1, 2, 3} :

‖jαf − jαg ‖(C0,1
b (R3))∗ := sup

‖φ‖
C

0,1
b

(R3)
≤1

ˆ
R3

φ(x)(jαf (dx)− jαg (dx)) = sup
‖φ‖

C
0,1
b

(R3)
≤1

ˆ
R3×R3

φ(x)vα(f − g)(dx, dv)

= sup
‖φ‖

C
0,1
b

(R3)
≤1

{ˆ
R3×R3

φ(x)vαχR(v)(f − g)(dx,dv) +

ˆ
R3×R3

φ(x)vα(1− χR(v))(f − g)(dx, dv)

}
=: I1 + I2.

Observe that, given φ ∈ C0,1
b (R3) such that ‖φ‖C0,1

b (R3) ≤ 1, the mapping (x, v) 7→ φ(x)vαχR(v) lies in

Lip(R3 × R3) with [φvαχR]Lip . R. Indeed, we have

[φvαχR]Lip ≤ [φ]Lip‖vαχR‖L∞(R3) + ‖φ‖L∞(R3)‖∇vvαχR‖L∞(R3)

and, for any v ∈ R3,

|vαχR(v)| . R, |∇v(vαχR)(v)| . |vα||∇vχ( vR )| 1
R
. ‖v∇vχ‖L∞(R3) . 1,

which implies

I1 . RW1(f, g).

For the second term, since f, g ∈ Bk0(C2), we have

I2 . sup
‖φ‖

C
0,1
b

(R3)
≤1

ˆ
R3×R3

φ(x)vα(1− χR(v))(f − g)(dxdv) .
Mk0

Rk0−1

and we conclude to (2.8) by choosing R =
M1/k0

k0

W1(f,g)1/k0
≥ 1 (since W1(f, g) ≤Mk0) if not infinite. �

With the above lemma we can show the following sufficient condition for the convergences in Assumption A2
to hold.
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Lemma 2.3. Consider a sequence (ZN )N∈N∗ of exchangeable random variables on ON and the associated
sequence of symmetric laws (FN )N∈N∗ on ON satisfying Assumption A1. Suppose that (FN )N∈N∗ is f -chaotic
(Definition 2.1), for some probability measure f on R3×R3 with support on Ω0×R3, and denote ρ :=

´
R3 f(·, dv)

and j :=
´
R3 vf(·,dv). Then (FN )N∈N∗ satisfies Assumption A2, more precisely there holds

E
[
W1(ρN [ZN ], ρ)

]
. E

[
W1(µN [ZN ], f)

]
−−−−→
N→∞

0

and

E
[
‖jN [ZN ]− j‖(C0,1

b (R3))∗

]
. E

[
W1(µN [ZN ], f)

] k0−1
k0 −−−−→

N→∞
0.

Proof. Thanks to the moment condition Assumption A1-(2) and the fact that (FN )N∈N∗ is f -chaotic, we know
from [12] that

lim
N→∞

E
[
W1(µN [ZN ], f)

]
= 0.

We conclude the proof by applying Lemma 2.2 and remarking that E
[
Mk0(µN [ZN ])

]
= Mk0(FN1 ) is uniformly

bounded thanks to Assumption A1-(2). �

2.2. Estimating the weight of concentrated configurations. For λ, α > 0, and any integer M ≤ N , we
define

(2.9) ONα :=
{
ZN ∈ ON | min

i6=j
|XN

i −XN
j | < N−α

}
and

(2.10) ONλ,M :=
{
ZN ∈ ON | there exist at least M particles (XN

i ) in the same cell C(λ) of size λ > 0
}
.

Here the cell C(λ) is given by, for some y ∈ R3, (y1− λ/2, y1 + λ/2)× (y2− λ/2, y2 + λ/2)× (y3− λ/2, y3 + λ/2),
so that |Cy(λ)| = λ3.

Below, we study the weight of the sets ONλ,M and ONα . For this, we allow that the parameters λ and M depend
on N. Namely, we denote:

(2.11) MN = Nβ , λN :=

(
η
MN

N

)1/3

, ∀N ∈ N∗

with positive parameters α, β, η to be fixed later on.

We now state the main result of this section.

Proposition 2.4. Consider a sequence of random variables (ZN )N∈N∗ and the sequence of their associated laws
(FN )N∈N∗ satisfying Assumption A1. Let α ∈ (2/3, 1), β ∈ (0, 1/2) and η ∈ (0,∞) sufficiently small. Then, the
sequences (MN )N∈N∗ and (λN )N∈N∗ given by formula (2.11) satisfy:

P(ZN ∈ ONλN ,MN
∪ ONα ) .

1

N3α−2
−−−−→
N→∞

0.

We emphasize that the smallness restriction in the previous statement is explicit. With the notations of
Assumption A1 it reads η < 1/(2eC1). The proof of Proposition 2.4 is split into the two following lemmas.

Lemma 2.5. Under the assumptions of Proposition 2.4, there holds

P(ZN ∈ ONλN ,MN
) . (2ηC1e)

Nβ
.

Proof. By symmetry of FN , given λ > 0 and M ∈ N∗ with M ≤ N , we have

P(ZN ∈ ONλ,M ) =

(
N

M

)
P((XN

1 , . . . , X
N
M ) are in the same cell C(λ)).

In order to compute the last probability, again by symmetry, we only need to compute the probability of particles
i ∈ {1, . . . ,M − 1} to be in the same cell C(λ) containing XN

M , the position of particle number M . Since a cell
C(λ) has diameter λ (with respect to `∞-norm), we obtain:

P(XN
1 , . . . , X

N
M are in the same cell C(λ))

≤ P

(
M−1⋂
i=1

{|XN
i −XN

M |∞ < λ}

)
≤
(
λ3C1

)M−1
,
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where we have used Assumption A1-(1) in last line.

When N,M →∞ with (N −M)→∞ and N/M →∞, Stirling’s formula gives(
N

M

)
=

N !

M !(N −M)!
∼

√
2πN1/2NNe−N√

2πM1/2MMe−M
√

2π(N −M)1/2(N −M)N−Me−(N−M)

∼ 1√
2π

(
N

M

)M
1

M1/2(1− M
N )N−M+1/2

,

which implies

P(ZN ∈ ONλ,M ) .
1√
2π

(
N

M

)M
1

M1/2(1− M
N )N−M+1/2

(
λ3C1

)M−1
.

We now consider the given sequences (MN )N∈N∗ and (λN )N∈N∗ given by formula (2.11), and we get

P(ZN ∈ ONλN ,MN
) .

(
N

MN

)MN 1

M
1/2
N (1− MN

N )N(1−MN/N)+1/2

(
η
MN

N
C1

)MN−1

.

(
N

MN

)
1

M
1/2
N (1− MN

N )N(1−MN/N)+1/2
(ηC1)

MN−1

Since β ∈ (0, 1/2), we have that M2
N/N → 0 so that we can simplify the denominator of the right-hand side:

P(ZN ∈ ONλN ,MN
) .

N

M
3/2
N

(ηC1e)
MN−1

= N (1− 3β
2 ) (ηC1e)

Nβ−1

. exp
(
Nβ log(ηC1e) +

(
1− 3β

2

)
logN

)
. (2ηC1e)

Nβ
.

�

Lemma 2.6. Under the assumptions of Proposition 2.4, there holds

P(ZN ∈ ONα ) . C1N
2−3α.

Proof. By symmetry of FN we have

P(ZN ∈ ONα ) =

(
N

2

)
P(|XN

1 −XN
2 | < N−α),

and we easily compute

P(|XN
1 −XN

2 | < N−α) . ‖FN1 ‖L∞x L1
v(R3×R3)N

−3α . C1N
−3α,

which completes the proof. �

3. Properties of the mapping UN for fixed N

In this section, we fix an arbitrary strictly positive N ∈ N and we analyze the properties of the mapping UN .
As N is fixed, we drop the exponents in notations (except ON ). For example, we denote U = UN , X = XN ,
V = VN , Xi = XN

i and Vi = V Ni ... The main result of this section reads:

Proposition 3.1. The mapping U defined in (1.4) satisfies U ∈ C(ON ; Ḣ1(R3)). Moreover, if F ∈ L1(ON ) is
a sufficiently regular symmetric probability density, we have U ∈ L1(ON , F (Z)dZ).

More quantitative statements on the integrability properties of U are stated in due course. In particular, the
meaning of “F sufficiently regular” is made precise in Section 3.3 below.

Let first recall classical statement on the well-definition of the mapping U. For fixed Z ∈ ON , by definition,
the restriction u of U [Z] to

F := R3 \
N⋃
i=1

Bi

(
Bi = B(Xi, 1/N), ∀ i = 1, . . . , N

)
,

should be the unique Ḣ1(F) vector-field for which there exists a pressure p such that (u, p) is a solution to:

(3.1)

{
−∆u+∇p = 0 ,

div u = 0 ,
in F
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completed with boundary conditions:

(3.2)

{
u(x) = Vi on Bi

lim|x|→∞ u(x) = 0.

We recall here shortly the function spaces and analytical arguments underlying the mathematical treatment of
this problem [13, Section 3]. We refer the interested reader also to [10, Sections IV-VI] for more details.

We denote D(R3) := {w ∈ C∞c (R3) div w = 0} and D(R3) its closure for the Ḣ1(R3)-norm. We recall that
D(R3) is a Hilbert space for the scalar product:

(u, v) 7→
ˆ
R3

∇u : ∇v

and that D(R3) ⊂ L6(R3). For a smooth exterior domain F (i.e. the complement of some bounded compact set
B ⊂ R3) we can then set

D(F) = {u|F , u ∈ D(R3)}.

By restriction, D(F ) is also a Hilbert space for the scalar product:

(3.3) (u, v) 7→
ˆ
F
∇u : ∇v.

Remark 3. We just remarked that:

D(F) ⊂ {u ∈ L6(F) s.t. ∇u ∈ L2(F) and div u = 0}.

One may then wonder if this inclusion is an equality. However, we have that D(F) ⊂ H1
loc(F). Since ∂F is

compact the trace of elements of D(F) is then well-defined in H1/2(∂F). Standard manipulations show also
that, if u ∈ D(F) then

(3.4)

ˆ
Γ

u · ndσ = 0 for every connected component Γ of ∂F .

Conversely, if this latter condition is satisfied then one can extend u by the solutions of the Stokes problem
inside the connected component of R3 \ F surrounded by Γ. Finally, we may then characterize:

D(F) = {u ∈ L6(F) satisfying ∇u ∈ L2(F), div u = 0 and (3.4)}.

In particular D(F) contains D0(F), the subset of divergence-free vector-fields vanishing on ∂F , which can also be

seen as the closure of D0(F) := {w ∈ C∞c (F), div w = 0} for the Ḣ1(F)-scalar product (3.3). Remarking that
extensions of vector-fiels in D0(F) are the trivial ones, and recalling that we have the embedding D(R3) ⊂ L6(R3)
we infer that D0(F) embeds continuously into L6(F).

With these definitions, problem (3.1)-(3.2) is associated with a(n equivalent) weak formulation:

Find u ∈ D(F) such that u = Vi on ∂Bi for i = 1, . . . , N andˆ
F
∇u : ∇w = 0 , for arbitrary w ∈ D0(F).

Existence of a weak-solution yields by applying a standard Riesz-Fréchet or Lax-Milgram argument which also
yields the following variational property:

Theorem 3.2. The vector-field U [Z] ∈ D(R3) is the unique minimizer of{ˆ
R3

|∇v|2, v ∈ D(R3) s.t. v|Bi = Vi for all i ∈ {1, . . . , N}
}
.

We refer the reader to [13, Theorem 3] for a similar proof on a bounded domain that can be adapted easily to
this case with the functional framework depicted above. The remainder of this section is organized as follows. In
the next subsection, we consider the continuity properties of the mapping U. We continue by deriving a pointwise
estimate and end up the section with an analysis of integrability properties of U.
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3.1. Continuity of the mapping U . At first, we obtain that:

Lemma 3.3. The mapping U satisfies U ∈ C(ON ;D(R3)).

As only continuity is required for our purpose, we give below a proof of this lemma based on monotonicity
arguments only. Nonetheless, one may prove much finer properties by using change of variables methods (see
[21, 4] for instance).

Proof. The problem (3.1)-(3.2) being linear with respect to its boundary data, we have that, for fixed X ∈ R3N

such that |Xi−Xj | > 2/N when i 6= j, the mapping V 7→ U [Z] is linear. Consequently, it is sufficient to consider
the continuity of the mapping X 7→ U [Z] for fixed V.

Let V ∈ R3N be fixed and consider X ∈ R3N – such that |Xi −Xj | > 2/N for any i 6= j – and a sequence

(X(k))k∈N in R3N such that

• Z(k) = (X(k),V) ∈ ON for any k ∈ N,
• limk→∞X

(k)
i = Xi, for i = 1, . . . , N.

We are interested in proving that U [Z(k)] converges to U [Z] in D(R3). Due to the variational characterization of
U [Z], we remark that it is sufficient to prove that the sequence (m(k))k∈N defined by

m(k) := inf

{ˆ
R3

|∇v|2, v ∈ D(R3) s.t. v|
B(X

(k)
i

,1/N)
= Vi for all i ∈ {1, . . . , N}

}
∀ k ∈ N

satisfies:

(3.5) lim
k→∞

m(k) = m∞ := inf

{ˆ
R3

|∇v|2, v ∈ D(R3) s.t. v|B(Xi,1/N)
= Vi for all i ∈ {1, . . . , N}

}
.

Indeed, for arbitrary k ∈ N, there holds: m(k) = ‖∇U [Z(k)]‖2L2(R3). Consequently, if (m(k))k∈N converges, U [Z(k)]

is bounded in D(R3). We may then pass to the limit in the weak formulation of the Stokes problem (restricted
to test-function in D0(F)) and we obtain that U [Z] is the weak limit of U [Z(k)] in D(R3). The convergence of
(m(k))k∈N implies then that (‖∇U [Z(k)]‖L2(R3))k∈N converges to ‖∇U [Z]‖L2(R3). As D(R3) is a Hilbert space,
this ends the proof.

To prove (3.5), we analyze the continuity properties of the function m∞(·) as defined by:

m∞(R) = inf

{ˆ
R3

|∇v|2, v ∈ D(R3) s.t. v|B(Xi,R)
= Vi for all i ∈ {1, . . . , N}

}
, ∀R > 0,

We note that m∞ = m∞(1/N) and that, as |Xi − Xj | > 2/N for i 6= j, this function is well defined for R
close to 1/N. Left continuity in 1/N is for free. Indeed, by construction, m∞(·) is increasing and, if we had
limR→1/N− m∞(R) < m∞(1/N), we would be able to construct a vector-field v ∈ D(R3) satisfying simultaneously
v|B(Xi,1/N)

= Vi for i = 1, . . . , N and
ˆ
R3

|∇v|2 ≤ lim
R→1/N−

m∞(R) < m∞(1/N),

which yields a contradiction. Right continuity in 1/N is a bit more intricate. To this end, we note that m∞(1/N)
is achieved by U [Z]. Remarking that, on the one hand, for an arbitrary truncation function χ there holds:

∇×
[
χ(x)

Vi × x
2

]
=

{
Vi on the set {χ = 1}
0 on the set {χ = 0},

and that, on the other hand D0(F) is dense in D0(F), we may construct a sequence (w(l))l∈N ∈ [D(R3)]N

converging to U [Z] and a sequence (ε(l))l∈N ∈ (0,∞)N converging to 0 such that, for arbitrary l there holds:

w(l) = Vi on B(Xi, 1/N + ε(l)) , ∀ i = 1, . . . , N.

This implies that:

‖∇U [Z]‖L2(R3) = m∞(1/N) ≤ m∞(1/N + ε(l)) ≤ ‖∇w(l)‖L2(R3) , ∀ k ∈ N,

and consequently, by comparison, that:

lim
R→1/N+

m∞(R) = lim
l→∞

m∞(1/N + ε(l)) = m∞(1/N).
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To conclude, we apply a simple geometric argument implying that, associated with the sequence (X(k))k∈N,
we may construct a sequence (η(k))k∈N ∈ (0,∞) converging to 0 for which, for arbitrary k ∈ N we have:

B(Xi, 1/N − η(k)) ⊂ B(X
(k)
i , 1/N) ⊂ B(Xi, 1/N + η(k)) ∀ i = 1, . . . , N.

Consequently, for arbitrary k ∈ N, by comparing the sets on which U [Z(k)] is equal to Vi with balls of center Xi,
we obtain:

m∞(1/N − η(k)) ≤ m(k) ≤ m∞(1/N + η(k)).

We conclude the proof thanks to the previous continuity analysis of R 7→ m∞(R) in R = 1/N. �

3.2. A pointwise estimate. We obtain now a bound for given configurations:

Lemma 3.4. There exists a universal constant C for which, given Z ∈ ON , there holds:

‖∇U [Z]‖2L2(R3) ≤
C

N

N∑
i=1

|Vi|2

1 +
1

N

∑
j 6=i

1|Xi−Xj |< 5
2N

|Xi −Xj | −
2

N

 .

Proof. In this proof Z ∈ ON is fixed and splits into X and V. The idea of the proof is to construct a suitable
function

w ∈ Y [Z] :=
{
v ∈ D(R3) s.t. v|Bi = Vi for all i ∈ {1, . . . , N}

}
whose norm can be bounded by the right-hand side of the above inequality. The bound is then transferred
to U [Z] via its variational characterization (see Theorem 3.2). To construct the candidate w we consider
successively the spheres Bi in the cloud. Given a sphere Bi we construct a divergence-free vector-field wi which
satisfies the boundary condition wi = Vi on Bi and wi = 0 on the Bj , for j 6= i. A näıve construction of wi would
be to truncate away from ∂Bi as a function of |x−Xi|. This would create a non-optimal vector-field (because it
requires to choose the distance at which the truncation vanishes smaller than the minimum distance between Bi
and the Bj ’s). Our method consists in drawing a virtual sphere of radius 3/2N around Xi. We then intersect
this sphere with F . This creates a connected domain with two boundaries: an internal one corresponding to
∂Bi and an external one made partially of the boundary of B(Xi, 3/2N) and partially of small spherical caps
corresponding to the Bj ’s that intersect B(Xi, 3/2N). We create then a vector-field that satisfies wi = Vi on
the internal boundary and wi = 0 on this virtual external boundary by truncating the (constant) vector-field
Vi. The key-point is that we make the truncation to depend not only on the distance |x−Xi| but also on the
projection of the point x and the sphere Bi. We treat then differently the truncation in a zone between ∂Bi and
spherical cap by adapting the construction of [14].

Technical details of the proof are are rather long, hence we stick to the main ideas here and postpone them to
Appendix A. The first intermediate result concerns the treatment of sphere Bi:

Lemma 3.5. Given i ∈ {1, . . . , N}, there exists wi ∈ D(R3) satisfying

wi = Vi in Bi and wi = 0 in Bj for j 6= i ,(3.6)

Supp(wi) ⊂ B(Xi,
3

2N ),(3.7)

such that:

(3.8) ‖∇wi‖2L2(R3) ≤
C|Vi|2

N

1 +
1

N

∑
j 6=i

1|Xi−Xj |< 5
2N

|Xi −Xj | −
2

N

 .

for a universal constant C.

Let (wi)i=1,...,N be given by Lemma 3.5. By combining (3.6) for i = 1, . . . , N , it is straightforward that:

w =

N∑
i=1

wi ∈ Y [Z].

Furthermore: ˆ
R3

|∇w|2 =

N∑
i=1

N∑
j=1

ˆ
R3

∇wi : ∇wj .

At this point, we use the property (3.7) in order to bound the right-hand side. Given i ∈ {1, . . . , N} let denote

Ii :=
{
j ∈ {1, . . . , N} s.t. B(Xi,

3
2N ) ∩B(Xj ,

3
2N ) 6= ∅

}
.
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We remark that, given two indices i and j we have the equivalence between j ∈ Ii and i ∈ Ij .
On the one hand, applying (3.7), there holds:

N∑
j=1

ˆ
R3

∇wi : ∇wj =
∑
j∈Ii

ˆ
R3

∇wi : ∇wj ∀ i = 1, . . . , N.

On the other hand, we have:

Lemma 3.6. Given i ∈ {1, . . . , N} the set Ii contains at most 64 distinct indices.

This lemma is obtained thanks to simple geometric argument that we develop in Appendix A. Applying
standard inequalities, we can then bound:∣∣∣∣∣∣

N∑
j=1

ˆ
R3

∇wi : ∇wj

∣∣∣∣∣∣ ≤ 32

ˆ
R3

|∇wi|2 +
1

2

∑
j∈Ii

ˆ
R3

|∇wj |2, ∀ i = 1, . . . , N,

which entails: ˆ
R3

|∇w|2 ≤ 32

N∑
i=1

ˆ
R3

|∇wi|2 +
1

2

N∑
i=1

∑
j∈Ii

ˆ
R3

|∇wj |2

≤ 32

N∑
i=1

ˆ
R3

|∇wi|2 +
1

2

N∑
j=1

|Ij |
ˆ
R3

|∇wj |2.

≤ 64

N∑
i=1

ˆ
R3

|∇wi|2.

We then conclude the proof by applying (3.8). �

3.3. Integrability properties of the mapping U . In this last part, we envisage to integrate the mapping U
against a sufficiently regular symmetric probability density F ∈ L1(ON ). To state the regularity assumption, we
recall the notations:

F1(z) =

ˆ
R6(N−1)

1ON (z, z′)F (z, z′)dz′, ∀ z ∈ R6,

F2(z1, z2) =

ˆ
R6(N−2)

1ON (z1, z2, z
′)F (z1, z2, z

′)dz′, ∀ (z1, z2) ∈ ON2 ,

where ON2 :=
{

(z1, z2) ∈ R6 s.t. |x1 − x2| >
2

N

}
. We introduce also:

j(x1, x2) =

ˆ
R6

|v1|F2((x1, v1), (x2, v2))dv1dv2, ∀ (x1, x2) s.t. |x2 − x1| >
2

N
.

With these notations, we prove

Proposition 3.7. Let F ∈ L1(ON ) be a symmetric probability density satisfyingˆ
R6

(1 + |z|2)F1(z)dz <∞,(3.9)

ˆ
R3

[
sup

x2∈R3\B(x1,2/N)

|j(x1, x2)|

]
dx1 <∞.(3.10)

There holds U ∈ L1(ON , F (Z)dZ) and there exists a universal constant C such that:

E[‖∇U‖L2(R3)] ≤ C

[(ˆ
R6

(1 + |z|2)F1(z)dz

) 1
2

+
1

N

ˆ
R3

[
sup

x2∈R3\B(x1,2/N)

|j(x1, x2)|

]
dx1

]
.

Proof. Since U ∈ C(ON ;D(R3)), our proof reduces to show that E[‖∇U‖L2(R3)] is finite. Let Z ∈ ON , applying
the bound of Lemma 3.4 together with a standard comparison argument, we obtain that:

‖∇U [Z]‖L2(R3) ≤ C

 1√
N

[
N∑
i=1

|Vi|2
] 1

2

+
1

N

N∑
i=1

∑
j 6=i

|Vi|
1|Xi−Xj |< 5

2N√
|Xi −Xj | − 2

N

 .
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We have then

E[‖∇U [Z]‖L2(R3)] ≤ C

E

( 1

N

N∑
i=1

|V Ni |2
) 1

2

+ E

 1

N

N∑
i=1

∑
j 6=i

|Vi|
1|Xi−Xj |< 5

2N√
|Xi −Xj | − 2

N


We split the right-hand side into two integrals I1 and I2. First applying a Jensen inequality and then symmetry
properties of the measure F we have:

I1 := E

( 1

N

N∑
i=1

|V Ni |2
) 1

2

 ≤ E

[
1

N

N∑
i=1

|V Ni |2
] 1

2

≤
(ˆ

R6

(1 + |z|2)F1(z)dz

)1/2

.

By assumption (3.9), we have then I1 < ∞. Furthermore, using symmetry properties, the definition of j and
assumption (3.10), we infer:

I2 := E

 1

N

N∑
i=1

∑
j 6=i

|Vi|
1|Xi−Xj |< 5

2N√
|Xi −Xj | − 2

N


≤ NE

|V1|
1|X1−X2|< 5

2N√
|X1 −X2| − 2

N


= N

ˆ
|x1−x2|> 2

N


ˆ
R3×R3

|v1|
1|x1−x2|< 5

2N√
|x1 − x2| − 2

N

F2(z1, z2)dv1dv2

 dx1dx2

≤ N

ˆ
R3

ˆ
B(x1,

5
2N )\B(x1,

2
N )

1√
|x1 − x2| − 2

N

j(x1, x2) dx2dx1.

≤ 1

N3/2

ˆ
R3

[
sup

x2∈R3\B(x1,2/N)

|j(x1, x2)|dx1

] ˆ
B(0, 52 )\B(0,2)

1√
|y| − 2

dy.

The last integral appearing on this last line being finite, we obtain that I2 <∞ and our proof is complete. �

With similar arguments as in the proof of this theorem, we also obtain the following corollary:

Corollary 3.8. Under the assumptions of Proposition 3.7, given ÕN ⊂ ON we have:

E[‖∇U‖L2(R3)1ÕN ] ≤ C

[
|P(ÕN )| 12

(ˆ
R6

(1 + |z|2)F1(z)dz

) 1
2

+
1

N3/2

ˆ
R3

[
sup

x2∈R3\B(x1,2/N)

|j(x1, x2)|

]
dx1

]
.

4. Main estimate for non-concentrated configurations

In this section, we compute a bound for the distance between a solution to the N -particle problem and
the limit Stokes-Brinkman system in a “favorable” case. For this, let first state a stability estimate for the
Stokes-Brinkman system suitable to our purpose.

Let consider a nonnegative density ρ̃ ∈ L3(Ω0) and a momentum ̃ ∈ L2(O) where Ω0 and O are bounded
open subsets of R3. The subset Ω0 is the one given in the introduction, corresponding to the domain occupied
by the cloud of particles. We denote below Ω1 = Ω0 +B(0, 1). The subset O is another bounded open subset,
not necessarily the same one. We apply the convention that we extend ρ̃ and ̃ by 0 in order to yield functions
on R3. In this framework, the existence/uniqueness theorem in bounded domains (as mentioned in [19]) extends
to the Stokes-Brinkman problem on the whole space:

(4.1)

{
−∆u+∇p+ 6πρ̃u = 6π̃

div u = 0
in R3,

(4.2) lim
|x|→∞

|u(x)| = 0.

Indeed, as in the case of the Stokes problem, the system (4.1)-(4.2) is associated with the weak formulation
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Find u ∈ D(R3) such thatˆ
R3

∇u : ∇w + 6π

ˆ
R3

ρ̃u · w = 6π

ˆ
R3

̃ · w, ∀w ∈ D(R3).

For positive ρ̃ ∈ L3(Ω0) ⊂ L3/2(R3), the left-hand side of the weak formulation represents a bilinear mapping
aρ which is in the same time coercive and continuous on D(R3) (we recall that D(R3) ⊂ L6(R3)). Hence, for

arbitrary ̃ ∈ L2(Ω0) ⊂ L6/5(R3) ⊂ [D(R3)]∗ we can apply a standard Lax-Milgram argument to obtain that
(4.1)-(4.2) admits a unique weak solution u := u[ρ̃, ̃] ∈ D(R3). At this point, we note that any weak solution u to
(4.1)-(4.2) is also a weak solution to the Stokes equations with data 6π(̃− ρ̃u). Since ̃ ∈ L2(R3) and ρ̃ ∈ L3(R3)
we obtain that the source term is in L2(R3) and apply elliptic regularity estimates for the Stokes equations on
R3 (see [10, Theorem IV.2.1]). This yields:

Proposition 4.1. For arbitrary ̃ ∈ L2(O) and non-negative ρ̃ ∈ L3(Ω0) the unique weak solution u := u[ρ̃, ̃]
to the Stokes-Brinkman problem (4.1)-(4.2) satisfies ∇2u ∈ L2(R3) and there exists constants K0,K1 whose
dependencies are mentioned in parenthesis such that:

‖∇u‖L2(R3) ≤ K0‖̃‖L6/5(R3), ‖∇2u‖L2(R3) ≤ K1(‖ρ̃‖L3(R3))
[
‖̃‖L2(R3) + ‖̃‖L6/5(R3)

]
.

By duality, the previous elliptic-regularity statement entails a regularity statement in negative Sobolev spaces.
Namely, given a nonnegative density ρ̃ ∈ L3(Ω0), we denote, for arbitrary v ∈ D(R3) :

[v]ρ̃,2 := sup

{∣∣∣∣ˆ
R3

∇v : ∇w + 6π

ˆ
R3

ρ̃v · w
∣∣∣∣ , w ∈ D(R3) with ‖∇w‖L2(R3) + ‖∇2w‖L2(R3) ≤ 1

}
.

Reproducing the arguments of [19, Lemma 2.4], we obtain then the following proposition:

Proposition 4.2. Given a bounded open subset O ⊂ R3, there exists K := K(O, ‖ρ̃‖L3(Ω0)) such that

‖v‖L2(O) ≤ K[v]ρ,2.

We refer the reader to the proof of [19, Lemma 2.4] for more details.

The computations below are then based on the following remark. Let ZN = (XN
1 , V

N
1 , . . . , XN

N , V
N
N ) ∈ ON ,

U = UN [ZN ] and P the associated pressure. For arbitrary divergence-free vector-field w ∈ C∞c (R3), we have by
integration by parts:

ˆ
R3

∇U : ∇w ∼
ˆ
FN
∇U : ∇w ∼

N∑
i=1

ˆ
∂B(XNi ,1/N)

Σ(U,P )n · wdσ,

where Σ(U,P ) = (∇U +∇>U)− P I3 is the fluid stress tensor and n is the normal to ∂B(XN
i , 1/N) directed

inward the obstacle. In the favorable configurations under consideration here, we can replace w – in the boundary
integrals on the right-hand side – by the value in the center of B(XN

i , 1/N) and compute the integral of the
stress tensor on ∂B(XN

i , 1/N) by using Stokes law (see [8, formula (4)]):

ˆ
∂B(XNi ,1/N)

Σ(U,P )n · wdσ ∼
ˆ
∂B(XNi ,1/N)

Σ(U,P )n · w(XN
i )dσ ∼ 6π

N

N∑
i=1

(V Ni − ŪNi ) · w(XN
i ),

where V Ni − ŪNi stands for the difference between the velocity on the obstacle B(XN
i , 1/N) and the velocity

“at infinity” seen by this obstacle. One important step of the analysis is to justify that we can choose for such
asymptotic velocity a mean of U around B(XN

i , 1/N). We obtain finally the identity:

ˆ
R3

∇U : ∇w +
6π

N

N∑
i=1

ŪNi · w(XN
i ) ∼ 6π

N

N∑
i=1

V Ni · w(XN
i ).

We recognize an identity of the form:ˆ
R3

∇U : ∇w + 6π〈ρN [ZN ], Ū〉 ∼ 6π〈jN [ZN ], w〉.

We compare then this weak-formulation with the weak formulation for the Stokes-Brinkman problem (4.1)-(4.2).
Taking the difference between both formulations, we apply the duality argument above to relate the L2

loc-norm
of the difference UN [ZN ]− u[ρ, j] to duality distances between ρN [ZN ] and ρ, on the one hand, and jN [ZN ] and
j, on the other hand. The core of the proof below is to quantify the error terms induced by the symbol “∼”
above, especially to justify the application of Stokes law for “favorable” configurations.
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4.1. Main result of this section. To state the main result of this section, we recall the notations introduced
in [13] to handle the convergence of UN towards u[ρ, j]. Given N ∈ N∗ and Z = (X1, V1, . . . , XN , VN ) ∈ ON , we
denote:

• dmin[Z] the minimal distance between two different centers Xi;

• λ[Z] a chosen size for a partition of R3 in cubes;

• M [Z] the maximum number of centers Xi inside one cell of size λ[Z].

If dmin[Z] is sufficiently large and M [Z] is sufficiently small, the particles are distant and do not concentrate in a
small box. This is the reason for the name “non-concentrated configurations” of this section. With these latter
notations, the main result of this section is the following estimate:

Theorem 4.3. Let α ∈ (2/3, 1), η ∈ (0, 1), R > 0 and δ > 1/2 be given. There exists a positive constant
K := K(α,R,Ω0) such that, for N ≥ 1, given ZN ∈ ON such that

(4.3) dmin[ZN ] ≥ 1

Nα
, M [ZN ] ≤ N3(1−α)/5

η
, λ[ZN ] =

(
ηM [ZN ]

N

) 1
3

,

we have

‖UN [ZN ]− u[ρ, j]‖L2(B(0,R)) ≤
K

η

[
‖j[ZN ]− j‖

[C
0,1/2
b (R3)]∗

+

(
1 +

1

N

N∑
i=1

|V Ni |2
) 5

4
(

1 + ‖ρ‖L2(Ω0)

δ1/3
+ δ6

(
1

N
1−α
5

+ ‖ρ[ZN ]− ρ‖
[C

0,1/2
b (R3)]∗

))]
.

where we recall that

ρ[ZN ] =
1

N

N∑
i=1

δXNi , j[ZN ] =
1

N

N∑
i=1

V Ni δXNi .

The remainder of this section is devoted to the proof of this theorem. It is based on interpolating the method
of [19] for dilute suspensions with the construction of [13]. Though the computations follow the line of these
previous reference, we give an extensive proof for completeness because estimates have to be adapted at each
line.

Proof of Theorem 4.3. From now on, we pick α, η, δ, R as in the assumptions of our Theorem 4.3, N ≥ 1 and
Z = (X1, V1, . . . , XN , VN ) ∈ ON such that (4.3) holds true. For legibility, we forget the N -dependencies in
many notations in the proof. We recall that, by assumption, Supp(ρ[Z]) ∪ Supp(j[Z]) ⊂ Ω0 and we denote
Ω1 := Ω0 +B(0, 1).

To begin with, we note that, by applying the variational characterization associated with the Stokes problem
(see [13, Theorem 3]), we can construct a constant C0 such that:

(4.4) ‖∇U [Z]‖2L2(R3) ≤
C0

N

N∑
i=1

|Vi|2.

This property relies mostly on the fact that Ndmin[Z] is bounded below by a strictly positive constant. We refer
the reader to [13, Section 3] for more details.

We want to compute a bound by above on ‖U [Z]−u[ρ, j]‖L2(B(0,R)). Applying Proposition 4.2, this reduces
to compute a bound for:

[U [Z]− u[ρ, j]]ρ,2 := sup
{∣∣∣∣ˆ

R3

∇(U [Z]− u[ρ, j]) : ∇w + 6π

ˆ
R3

ρ(U [Z]− u[ρ, j]) · w
∣∣∣∣ , w ∈ D(R3) with

‖∇w‖L2(R3) + ‖∇2w‖L2(R3) ≤ 1
}
,

or to find a constant K independent of U [Z] and w ∈ D(R3) for which there holds∣∣∣∣ˆ
R3

∇(U [Z]− u[ρ, j]) : ∇w + 6π

ˆ
R3

ρ(U [Z]− u[ρ, j]) · w
∣∣∣∣ ≤ K [‖∇w‖L2(R3) + ‖∇2w‖L2(R3)

]
.
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Hence, in what follows we fix w ∈ D(R3) and we focus on:

E[w] :=

ˆ
R3

∇[U [Z]− u[ρ, j]] : ∇w + 6π

ˆ
R3

ρ(U [Z]− u[ρ, j]) · w.

We apply without mention below that, since Ω1 is bounded, there holds:

‖w‖C0,1/2(Ω1) + ‖∇w‖L6(Ω1) . ‖∇w‖L2(R3) + ‖∇2w‖L2(R3) =: ‖w‖D2(R3).

First, we decompose the error term E[w] into several pieces that are treated independently in the rest of the
proof. Since u[ρ, j] is the weak solution to the Stokes-Brinkman problem associated with (ρ, j), this error term
rewrites:

E[w] =

ˆ
R3

(∇U [Z] : ∇w + 6πρU [Z] · w)−
ˆ
R3

(∇u[ρ, j] : ∇w + 6πρu[ρ, j] · w),

=

ˆ
R3

(∇U [Z] : ∇w + 6πρU [Z] · w)− 6π

ˆ
R3

j · w.

We now work on the gradient term involved in this error:ˆ
R3

∇U [Z] : ∇w,

in the spirit of [13]. Applying the construction in [13, Appendix B], we obtain a covering (Tκ)κ∈Z3 of R3 with
cubes of width λ[Z] such that, denoting

Zδ :=

{
i ∈ {1, . . . , N} s.t. dist

(
Xi ,

⋃
κ∈Z3

∂Tκ

)
<
λ[Z]

δ

}
,

there holds:

(4.5)
1

N

∑
i∈Zδ

(1 + |Vi|2) ≤ 12

δ

1

N

N∑
i=1

(1 + |Vi|2).

Moreover, keeping only the indices K such that Tκ intersects the 1/N neighborhood of Ω0, we obtain a covering
(Tκ)κ∈K of the 1/N -neighborhood of Ω0. We do not make precise the set of indices K. The only relevant property
to our computations is that

(4.6) #K . |Ω1|
|λ|3

.

Associated with this covering, we introduce the following notations. For arbitrary κ ∈ K, we set

Iκ := {i ∈ {1, . . . , N} s.t. Xi ∈ Tκ} , Mκ[Z] := #Iκ .

We note that, since Tκ has width λ[Z], we have that Mκ[Z] ≤M [Z] for all κ. Moreover, by construction of K,
all the Xi are included in one Tκ so that the (Iκ)κ∈K realizes a partition of {1, . . . , N}.

We construct then an approximate test-function ws piecewisely on the covering of Ω0. Given κ ∈ K, we set:

(4.7) wsκ(x) =
∑

i∈Iκ\Zδ

GN [w(Xi)](x−Xi) , ∀x ∈ R3 ,

where GN [v] is the unique weak solution to the Stokes problem outside B(0, 1/N) with vanishing condition at
infinity and constant boundary condition equal to v ∈ R3 on ∂B(0, 1/N). Explicit formulas are available in
textbooks and are recalled in Appendix B. We set:

ws =
∑
κ∈K

wsκ1Tκ .

We note that ws /∈ H1
0 (R3) because of jumps at interfaces ∂Tκ. It will be sufficient for our purpose that

ws ∈ H1(T̊κ) for arbitrary κ ∈ K. Setting:

E0[w] :=

ˆ
R3

∇U [Z] : ∇w −
∑
κ∈K

ˆ
R3

∇U [Z] : ∇wsκ,

we have:

E[w] = E0[w] +
∑
κ∈K

ˆ
Tκ

∇U [Z] : ∇wsκ + 6π

ˆ
R3

ρU [Z] · w − 6π

ˆ
R3

j · w.
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Now for arbitrary κ ∈ K, we apply in Section 4.3 the properties of GN and integrate by parts the integral on
Tκ. We obtain an integral on ∂Tκ in which we approximate U [Z] by:

ūκ :=
1

|[Tκ]2δ|

ˆ
[Tκ]2δ

U [Z](x)dx,

where [Tκ]2δ is the λ[Z]/(2δ)-neighborhood of ∂Tκ inside T̊κ. In this way we obtain thatˆ
Tκ

∇U [Z] : ∇wsκ =
6π

N

∑
i∈Iκ\Zδ

w(Xi) · (Vi − ūκ) + Errκ.

where it will arise that Errκ is due to the approximation of U [Z] by ūκ on ∂Tκ only. So, we set:

E1[w] =
∑
κ∈K

ˆ
Tκ

∇U [Z] : ∇wsκ −
6π

N

∑
i∈Iκ\Zδ

w(Xi) · (Vi − ūκ)


and we rewrite:

E[w] = E0[w] + E1[w] +
6π

N

∑
κ∈K

∑
i∈Iκ\Zδ

w(Xi) · Vi −
6π

N

∑
κ∈K

∑
i∈Iκ\Zδ

w(Xi) · ūκ

+ 6π

ˆ
R3

ρU [Z] · w − 6π

ˆ
R3

j · w.

Eventually, we obtain:

(4.8) E[w] = E0[w] + E1[w]− Eρ[w] + Ej [w],

where we denote:

Ej [w] :=
6π

N

∑
κ∈K

∑
i∈Iκ\Zδ

w(Xi) · Vi − 6π

ˆ
R3

j · w,

Eρ[w] :=
∑
κ∈K

6π

N

∑
i∈Iκ\Zδ

w(Xi)

 · ūκ − 6π

ˆ
R3

ρU [Z] · w.

Applying successively Lemma 4.4 , Lemma 4.5, Lemma 4.6 and Lemma 4.7 below, and recalling (4.3) to
replace λ[Z], dmin[Z] and M [Z], we obtain respectively:

|E0[w]| . 1

η

(
1

δ2/3
+

1

N
2
5 (1−α)

+
δ

N
4
5α−

2
15

) 1
2

(
1 +

1

N

N∑
i=1

|Vi|2
)
‖w‖D2(R2),

|E1[w]| . δ6

√
η

1

N
2+3α
15

(
1 +

1

N

N∑
i=1

|Vi|2
) 1

2

‖w‖D2(R2),

|Ej [w]| .

(
‖j[Z]− j‖

[C
0,1/2
b (R3)]∗

+
1

δ

(
1 +

1

N

N∑
i=1

|Vi|2
))
‖w‖D2(R2),

|Eρ[w]| .

[
1√
δ
√
η

+
‖ρ‖L2(Ω0)

δ
+ δ

9
2

(
1

N
2+3α
15

+ ‖ρ[Z]− ρ‖
[C

0,1/2
b (R3)]∗

)](
1 +

1

N

N∑
i=1

|Vi|2
) 5

4

‖w‖D2(R3).

Gathering the above estimates, recalling that η ∈ (0, 1), δ > 1/2, and remarking that, since 2/3 6 α < 1 there
holds

1− α
5

<
2

5

(
α− 1

3

)
<

2 + 3α

15
,

we finally obtain:

|E[w]| . 1

η

[(
(1 + ‖ρ‖L2(Ω0))

δ1/3
+ δ6

(
1

N
1
5 (1−α)

+ ‖ρ[Z]− ρ‖
[C

0,1/2
b (R3)]∗

))(
1 +

1

N

N∑
i=1

|Vi|2
) 5

4

+ ‖j[Z]− j‖
[C

0,1/2
b (R3)]∗

]
‖w‖D2(R3),

which ends the proof of Theorem 4.3. �
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We proceed now to estimate the different error terms E0[w], E1[w], Ej [w] and Eρ[w] appearing in the proof
of Theorem 4.3 above. This is done in Sections 4.2, 4.3, 4.4 and 4.5, respectively.

4.2. Estimating E0[w]. We recall that, with the notations above, there holds:

E0[w] =
∑
κ∈K

(ˆ
Tκ

∇U [Z] : ∇w −
ˆ
Tκ

∇U [Z] : ∇wsκ
)
,

We have the following result:

Lemma 4.4. For N ≥ 1, we have:

(4.9) |E0[w]| .

(
1 +

1

N

N∑
i=1

|Vi|2
)
. . .

. . .

(
1

δ2/3

(
1 +

M [Z]2

|Ndmin[Z]|2
+

M [Z]
5
3

Ndmin[Z]
+

M [Z]2

|Ndmin[Z]|4

)
+

M [Z]

Ndmin[Z]
+ δ

M [Z]
5
3

Nλ[Z]

)1/2

‖w‖D2(R3).

Proof. The proof is a simpler version of [13, Proposition 11] but keeping track of the dependencies on w of all
constants.

First, we construct an intermediate test-function similar to [13, pp. 25-26]. We recall here the ideas of the

construction. For arbitrary κ ∈ K, we consider the Stokes problem on T̊κ \
⋃
i∈Iκ\Zδ Bi with boundary conditions:

(4.10)

{
u(x) = w(x) , on ∂Bi for i ∈ Iκ \ Zδ ,

u(x) = 0 , on ∂Tκ .

The analysis of this problem is done in Appendix B and yields a solution w̄κ. We keep the symbol w̄κ to denote
its extension to R3 (by w on the holes and by 0 outside T̊Nκ ). We obtain a divergence-free w̄κ ∈ H1(R3) having
support in Ω1. We then add the w̄κ into:

w̄ =
∑
κ∈K

w̄κ .

and correct the values of w̄ on the Bi when i ∈ Zδ in order that it fits the same boundary conditions as w on the
Bi, i = 1, . . . , N. We introduce χN a truncation function such that χN = 1 in B(0, 1/N) and χN = 0 outside
B(0, 2/N) and we denote:

w̃ =
∑
i∈Zδ

[
χN (· −Xi)w −BXi,

1
N ,

2
N

[x 7→ w(x) · ∇χN (x−Xi)]
]

+
∏
i∈Zδ

(1− χN (· −Xi))w̄ +
∑
i∈Zδ

BXi,
1
N ,

2
N

[x 7→ w̄(x) · ∇χN (x−Xi)] .

where BX,r1,r2 is the Bogovskii operator that lifts the divergence in bracket with a vector-field in H1
0 (B(X, r2) \

B(X, r1)). Consequently, w − w̃ ∈ H1
0 (F) is an available test-function in the weak-formulation of the Stokes

problem satisfied by U [Z]. This yields: ˆ
R3

∇U [Z] : ∇(w − w̃) = 0.

We rewrite this identity as follows:

(4.11) E0[w] = ε1 + ε2 ,

with:

ε1 =
∑
κ∈K

ˆ
Tκ

∇U [Z] : ∇(w̄κ − wsκ) , ε2 =

ˆ
Ω1

∇U [Z] : ∇(w̃ − w̄) .

We control now the error term ε1. For arbitrary κ ∈ K, we apply Proposition B.1 to w̄κ (noting that ”dm” =
min(dmin[Z], λ[Z]/δ) and the remark at the end of Section B) and we obtain:

‖∇(wsκ − w̄κ)‖L2(Tκ) .
Mκ[Z]

N

(
1

dmin[Z]
+

δ

λ[Z]

)1/2 (
‖w‖C0,1/2(Tκ) + ‖∇w‖L6(Tκ)

)
.

Introducing this bound in the computation of ε1 and recalling the two properties of Mκ[Z] :

(4.12)
∑
κ∈K

Mκ[Z] ≤ N , sup
κ∈K

Mκ ≤M [Z] ,
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yield:

(4.13) |ε1| .
(

M [Z]

Ndmin[Z]
+ δ

M [Z]

Nλ[Z]

) 1
2

‖∇U [Z]‖L2(R3)‖w‖D2(R3) .

We compute now a bound for ε2. For this, we replace w̃ by its explicit construction. We recall that the
supports of the (χN (· −Xi))i∈{1,...,N} are disjoint so that:

1−
∏
i∈Zδ

(1− χN (x−Xi)) =
∑
i∈Zδ

χN (x−Xi) , ∀x ∈ R3.

Consequently, we split:

w̄ − w̃ =
∑
i∈Zδ

[
χN (· −Xi)w̄ −BXi,

1
N ,

2
N

[x 7→ w̄(x) · ∇χN (x−Xi)]
]

−
∑
i∈Zδ

[
χN (· −Xi)w −BXi,

1
N ,

2
N

[x 7→ w(x) · ∇χN (x−Xi)]
]
.

and ∇(w̄ − w̃) =
∑
i∈Zδ

∑3
`=1 ε

(`)
2,i where, for i ∈ Zδ, we denote:

ε
(1)
2,i = −∇

[
χN (· −Xi)w −BXi,

1
N ,

2
N

[x 7→ w(x) · ∇χN (x−Xi)]
]
,

ε
(2)
2,i = ∇χN (· −Xi)⊗ w̄ −∇BXi,

1
N ,

2
N

[x 7→ w̄(x) · ∇χN (x−Xi)],

ε
(3)
2,i = χN (· −Xi)∇w̄.

We remark here that ε
(`)
2,i has support in B(Xi, 2/N) whatever the value of `. As previously, a standard

Cauchy-Schwarz argument yields:

(4.14) |ε2| . ‖∇U [Z]‖L2(R3)

(
3∑
`=1

∑
i∈Zδ

|ε(`)2,i |
2

) 1
2

.

To complete the proof, it remains to bound the last term in the right-hand side of the above inequality.

First, by applying standard homogeneity properties of the Bogovskii operator (see [13, App. A]) and explicit
computations, we have, for i ∈ Zδ:ˆ

B(Xi,2/N)

|ε(1)
2,i |

2 ≤ 1

N
‖w‖2L∞(Ω1) + ‖∇w‖2L2(B(Xi,2/N))

.
1

N

(
‖w‖2L∞(Ω1) + ‖∇w‖2L6(B(Xi,2/N))

)
.

But, by the choice of the covering (see (4.5)), we have:

(4.15) ]Zδ .
N

δ

(
1 +

1

N

N∑
i=1

|Vi|2
)
,

so, we obtain finally:

(4.16)
∑
i∈Zδ

ˆ
B(Xi,2/N)

|ε(1)
2,i |

2 ≤ 1

δ

(
1 +

1

N

N∑
i=1

|Vi|2
)
‖w‖2D2(R3).

Secondly, with similar arguments as for ε
(1)
2,i , we obtain, for i ∈ Zδ:ˆ

B(Xi,2/N)

|ε(2)
2,i |

2 . N2‖w̄‖2L2(B(Xi,2/N))

and ∑
i∈Zδ

ˆ
B(Xi,2/N)

|ε(2)
2,i |

2 . N2
∑
i∈Zδ

∑
κ∈K
‖w̄‖2L2(B(Xi,

2
N )∩Tκ) ,

. N2
∑
κ∈K

∑
i∈Zδ

‖w̄κ − wsκ‖2L2(B(Xi,
2
N )∩Tκ) +N2

∑
i∈Zδ

∑
κ∈K
‖wsκ‖2L2(B(Xi,

2
N )∩Tκ) .
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We compute the first term on the last right-hand side thanks to the expansion (B.4) of GN and remarking that,
since the diameter of B(Xi,

2
N ) is infinitely smaller than the one of Tκ for N sufficiently large, one B(Xi, 2/N)

intersects at most 8 distinct Tκ. Repeating (4.15), we conclude:∑
i∈Zδ

∑
κ∈K
‖wsκ‖2L2(B(Xi,

2
N )∩Tκ) .

∑
i∈Zδ

8 sup
κ∈K
‖wsκ‖2L2(B(Xi,

2
N )) ,

.
|M [Z]|2

N4d2
min[Z]

1 + 1
N

∑N
i=1 |Vi|2

δ
‖w‖2L∞(Ω1).

As for the other term, we introduce, for κ ∈ K, the set Zδ,κ of indices i such that B(Xi,
2
N ) ∩ Tκ 6= ∅, and we

obtain, by repeated use of Hölder’s inequality, that:∑
κ∈K

∑
i∈Zδ

‖w̄κ − wsκ‖2L2(B(Xi,
2
N )∩Tκ) =

∑
κ∈K

∑
i∈Zδ,κ

‖w̄κ − wsκ‖2L2(B(Xi,
2
N )∩Tκ)

.
∑
κ∈K

|]Zδ,κ|
2
3

N2
‖(w̄κ − wsκ)‖2L6(Tκ)

.
1

N2

[∑
κ∈K

]Zδ,κ

] 2
3
(∑
κ∈K
‖(w̄κ − wsκ)‖6L6(Tκ)

) 1
3

.

By comparing the size of Tκ and B(Xi, 2/N), we obtain again that:[∑
κ∈K

]Zδ,κ

] 2
3

. |]Zδ|
2
3 .

[
N

δ

(
1 +

1

N

N∑
i=1

|Vi|2
)] 2

3

,

which, combined with Proposition B.1 and (4.12), yields:∑
κ∈K

∑
i∈Zδ

‖(w̄κ − wsκ)‖2L2(B∞(Xi,
2
N )∩Tκ) .

(1 + 1
N

∑N
i=1 |Vi|2)

2
3

δ
2
3N2

|M [Z]|5/3

N

(
1

dmin[Z]
+

δ

λ[Z]

)
‖w‖2D2(R3).

Combining the above inequalities and recalling (4.4), we conclude that:

(4.17)
∑
i∈Zδ

ˆ
B(Xi,2/N)

|ε(2)
2,i |

2 .

(
1 +

1

N

N∑
i=1

|Vi|2
)
. . .

. . .

(
1

δ

|M [Z]|2

|Ndmin[Z]|2
+

1

δ2/3

|M [Z]|5/3

Ndmin[Z]
+ δ1/3 |M [Z]|5/3

Nλ[Z]

)
‖w‖2D2(R3).

Finally, we have similarly:∑
i∈Zδ

ˆ
B(Xi,2/N)

|ε(3)
2,i |

2 .
∑
i∈Zδ

∑
κ∈K
‖∇w̄‖2L2(B(Xi,2/N)∩Tκ)

.
∑
κ∈K

∑
i∈Zδ

‖∇w̄κ −∇wsκ‖2L2(B(Xi,
2
N )∩Tκ) +

∑
i∈Zδ

∑
κ∈K
‖∇wsκ‖2L2(B(Xi,

2
N )∩Tκ) .

and we can reproduce the previous arguments relying on Proposition B.1. This yields, on the one hand:∑
i∈Zδ

∑
κ∈K
‖∇wsκ‖2L2(B(Xi,

2
N )∩Tκ) .

M2[Z]

δ|Ndmin[Z]|4

(
1 +

1

N

N∑
i=1

|Vi|2
)
‖w‖2D2(R3),

and, on the other hand:∑
κ∈K

∑
i∈Zδ

‖∇w̄κ −∇wsκ‖2L2(B(Xi,
2
N )∩Tκ) .

∑
κ∈K
‖∇w̄κ −∇wsκ‖2L2(Tκ)

.
M [Z]

N

(
1

dmin[Z]
+

δ

λ[Z]

)
‖w‖2D2(R3).

We obtain finally that:

(4.18)
∑
i∈Zδ

ˆ
B(Xi,2/N)

|ε(3)
2,i |

2 .

(
1 +

1

N

N∑
i=1

|Vi|2
)(

1

δ

M2[Z]

|Ndmin[Z]|4
+

M [Z]

Ndmin[Z]
+ δ

M [Z]

Nλ[Z]

)
‖w‖2D2(R3).
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Introducing (4.16), (4.17) and (4.18) into (4.14) yields:

(4.19) |ε2| .

(
1 +

1

N

N∑
i=1

|Vi|2
)
. . .

. . .

(
1

δ2/3

(
1 +

M [Z]2

|Ndmin[Z]|2
+

M [Z]
5
3

Ndmin[Z]
+

M [Z]2

|Ndmin[Z]|4

)
+

M [Z]

Ndmin[Z]
+ δ

M [Z]
5
3

Nλ[Z]

) 1
2

‖w‖D2(R3).

We complete the proof by combining (4.13)-(4.19). �

4.3. Estimating E1[w]. We proceed with the computation of E1[w] defined by:

E1[w] =
∑
κ∈K

ˆ
Tκ

∇U [Z] : ∇wsκ − 6π
∑

i∈Iκ\Zδ

w(Xi) · (Vi − ūκ)

 .

We control this error term with the following lemma:

Lemma 4.5. Given N ≥ 1, we have:

|E1[w]| . δ6

√
M [Z]

Nλ[Z]

(
1 +

1

N

N∑
i=1

|Vi|2
) 1

2

‖w‖D2(R3).

Proof. For N sufficiently large and κ ∈ K, let simplify at first:

Ĩκ :=

ˆ
Tκ

∇U [Z] : ∇wsκ .

By definition, we have that:

wsκ(x) =
∑

i∈Iκ\Zδ

GN [w(Xi)](x−Xi) , ∀x ∈ R3 ,

so that, introducing the associated pressures x 7→ PN [w(XN
i )](x−XN

i ), we obtain (after several integration by
parts as depicted in [13, pp. 32-33]):

(4.20) Ĩκ =
6π

N

∑
i∈Iκ\Zδ

(w(Xi) · Vi − w(Xi) · ūκ) + Errκ

with:

Errκ =

ˆ
∂Tκ

 ∑
i∈Iκ\Zδ

∂nG
N [w(Xi)](· −Xi)− PN [w(Xi)](· −Xi)n

 · (U [Z]− ūκ)dσ .

Summing over κ ∈ K, we obtain that∑
κ∈K

ˆ
Tκ

∇U [Z] : ∇wsκ =
∑
κ∈K

Ĩκ

=
∑
κ∈K

6π

N

∑
i∈Iκ\Zδ

(w(Xi) · Vi − w(Xi) · ūκ) +
∑
κ∈K

Errκ,

and also:

E1[w] =
∑
κ∈K

Errκ.

For κ ∈ K, we adapt (up to notations) the computations of [13, pp. 34-35]. The point here is to lift the
boundary condition U [Z]− ūκ via a standard truncation process in order to yield a divergence-free vector-field v
which vanishes at a distance λ[Z]/(2δ) of ∂Tκ. Applying that (GN [w(Xi)], P

N [w(Xi)]) solves the Stokes equation
on [Tκ]2δ (since this subset contains no holes with index in Iκ \ Zδ) we obtain:

(4.21) |Errκ| ≤ CB[2δ](1 + CPW [2δ])

 ∑
i∈Iκ\Zδ

‖∇GN [w(Xi)](· −Xi)‖L2([Tκ]2δ)

 ‖∇U [Z]‖L2([Tκ]2δ) ,

where, denoting A(0, 1− 1/δ, 1) the cubic annulus ]− 1, 1[3\[−(1− 1/δ), 1/δ]3, we used the symbols:
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• CB[δ] for the norm of the Bogovskii operator B0,1−1/δ,1 seen as a continuous linear mapping L2
0(A(0, 1−

1/δ, 1))→ H1
0 (A(0, 1− 1/δ, 1)),

• CPW [δ] for the constant of the Poincaré-Wirtinger inequality on H1(A(0, 1− 1/δ, 1)).

The asymptotics of these constants when δ →∞ are analyzed in Appendix C.

To bound the first term on the right-hand side of this inequality, we remark again that for any i ∈ Iκ \ Zδ the
minimum distance between Xi and [Tκ]2δ is larger than λ[Z]/(2δ). Hence, applying the explicit formula (B.4) of
the Stokeslet GN [w(Xi)] we obtain that

‖∇GN [w(Xi)](· −Xi)‖L2([Tκ]2δ) ≤

(ˆ ∞
λ[Z]/(2δ)

dr

N2r2

) 1
2

|w(Xi)|

≤
√

2δ

N
√
λ[Z]
|w(Xi)| .

Combining these computations for the (at most) Mκ[Z] indices i ∈ Iκ \ Zδ entails that:

(4.22)
∑

i∈Iκ\Zδ

‖∇GN [w(Xi)](· −Xi)‖L2([Tκ]2δ) .
Mκ[Z]

N

√
2δ

λ[Z]
‖w‖L∞(Ω1) .

Plugging (4.22) into (4.21) and recalling the fundamental properties (4.12) of Mκ[Z] we conclude that

|E1[w]| . CB[2δ](1 + CPW [2δ])

√
2δM [Z]

Nλ[Z]
‖∇U [Z]‖L2(R3)‖w‖C0,1/2(Ω1).

We conclude the proof of Lemma 4.5 by applying that CB[2δ](1 + CPW [2δ]) . δ11/2 (see Appendix C) and
recalling (4.4). �

4.4. Estimating Ej [w]. We proceed with the error term

Ej [w] =
∑
κ∈K

6π

N

∑
i∈Iκ\Zδ

w(Xi) · Vi − 6π

ˆ
R3

j · w.

Lemma 4.6. Given N ≥ 1, there holds:

|Ej [w]| .

(
‖j[Z]− j‖

[C
0,1/2
b (R3)]∗

+
1

δ

(
1 +

1

N

N∑
i=1

|Vi|2
))
‖w‖D2(R3) .

Proof. As w ∈ C∞c (R3) and (Tκ)κ∈K is a covering of Supp(j[Z]) we have that:∑
κ∈K

∑
i∈Iκ

w(Xi) · Vi = 〈j[Z], w〉.

Consequently, complementing the sum in Ej with the indices in Zδ, we have:

Ej [w] = 6π〈j[Z]− j, w〉+
6π

N

∑
i∈Zδ

w(Xi) · Vi.

The first term on the right-hand side is estimated straightforwardly:

|〈j[Z]− j, w〉| ≤ ‖j[Z]− j‖[C0,1/2(R3)]∗‖w‖C0,1/2
b (Ω1)

,

while repeating the proof of [13, Lemma 15], we obtain, for N ≥ 1 :∣∣∣∣∣6πN ∑
i∈Zδ∩Iδ

w(XN
i ) · V Ni

∣∣∣∣∣ . 1

δ

(
1 +

1

N

N∑
i=1

|Vi|2
)
‖w‖L∞(Ω1),

which yields the expected result and completes the proof of Lemma 4.6. �
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4.5. Estimating Eρ[w]. We end up by estimating the remainder term

Eρ[w] =
∑
κ∈K

6π

N

∑
i∈Iκ\Zδ

w(Xi)

 · ūκ − 6π

ˆ
R3

ρU [Z] · w.

Lemma 4.7. For N sufficiently large, there holds:

|Eρ[w]| .

(
1

δ
5
2

(√
M [Z]

N |λ[Z]|3
+ ‖ρ‖L2(Ω0)

)
+

1√
δ

(
M [Z]

N |λ[Z]|3

)1/4

+ δ9/2
(
λ[Z] + ‖ρ[Z]− ρ‖

[C
0,1/2
b (R3)]∗

))(
1 +

1

N

N∑
i=1

|Vi|2
) 5

4

‖w‖D2(R3).

Proof. The proof is adapted from [19, Proposition 3.7]. As previously, let first complete the sum by reintroducing
the Zδ indices:

(4.23)
6π

N

∑
κ∈K

∑
i∈Iκ\Zδ

w(Xi) · ūκ =
6π

N

∑
κ∈K

∑
i∈Iκ

w(Xi) · ūκ − Ẽrr

where:

Ẽrr =
6π

N

∑
κ∈K

∑
i∈Iκ∩Zδ

w(Xi) · ūκ.

We have then:

Eρ[w] =
6π

N

∑
κ∈K

∑
i∈Iκ

w(Xi) · ūκ − 6π

ˆ
Ω1

ρU [Z] · w − Ẽrr.

We remark that we may rewrite the first term on the right-hand side of this equality by introducing:

σ =

(
1−

(
1− 1

2δ

)3
)−1

1

N |λ[Z]|3
∑
κ∈K

(∑
i∈Iκ

w(Xi)

)
1[Tκ]2δ ,

which yields

Eρ[w] = 6π

ˆ
Ω1

[σ − ρw] · U [Z]− Ẽrr.

Finally, we introduce Uδ[Z] := U [Z] ∗ ζδ3 in this identity (in order to regularize U [Z] so that we may make the
difference between ρ[Z] and ρ appear) where we recall that (ζn)n is a sequence of mollifiers. We apply below that

(4.24) ‖Uδ[Z]‖C0,1(Ω1) . δ
9
2 ‖∇U [Z]‖L2(R3), ‖U [Z]δ − U [Z]‖L2(Ω1) .

‖∇U [Z]‖L2(R3)

δ3
.

Indeed, by classical computations there holds

‖Uδ[Z]‖C0,1(Ω1) . ‖Uδ[Z]‖L∞(Ω1) + ‖∇Uδ[Z]‖L∞(Ω1) . ‖∇U [Z]‖L2(R3)(1 + ‖ζδ3‖L2(R3)),

which yields the first inequality, and moreover

‖Uδ[Z]− U [Z]‖2L2(Ω1) =

ˆ ∣∣∣∣∣
ˆ
|z|≤1

[U [Z](x− z
δ3 )− U [Z](x)]ζ(z)dz

∣∣∣∣∣
2

dx

.
ˆ ˆ

|z|≤1

|U [Z](x− z
δ3 )− U [Z](x)|2dzdx

.
1

δ6

ˆ ˆ
|z|≤1

|z|2
ˆ 1

0

|∇U [Z](x− t zδ3 )|2dtdzdx

.
1

δ6
‖∇U [Z]‖2L2(R3),

which implies the second one.

This entails that:
Eρ[w] = Ěrr + Êrr − Ẽrr

where

Ěrr = 6π

ˆ
Ω1

(σ − ρw) · (U [Z]− Uδ[Z]) , Êrr = 6π

ˆ
Ω1

(σ − ρw) · Uδ[Z].

We proceed by estimating these three error terms independently.
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We first remark that the (Iκ)κ∈K form a partition of {1, . . . , N}. This entails that:

‖σ‖L1(Ω1) ≤
∑
κ∈K

Mκ

N
‖w‖L∞(Ω1) ≤ ‖w‖L∞(Ω1).

Straightforward computations imply also that:

‖σ‖L∞(Ω1) ≤

(
1−

(
1− 1

2δ

)3
)−1

M [Z]

N |λ[Z]|3
‖w‖L∞(Ω1)

. δ
M [Z]

N |λ[Z]|3
‖w‖L∞(Ω1).

By interpolating the above inequalities to control the L2-norm of σ and combining with (4.24), we deduce:

|Ěrr| .
(
‖σ‖L2(Ω1) + ‖ρ‖L2(Ω1)‖w‖L∞(Ω1)

)
‖Uδ[Z]− U [Z]‖L2(Ω1)

.

(√
δ

M [Z]

N |λ[Z]|3
+ ‖ρ‖L2(Ω1)

)
‖∇U [Z]‖L2(R3)

δ3
‖w‖L∞(Ω1)

.
1

δ5/2

(√
M [Z]

N |λ[Z]|3
+ ‖ρ‖L2(Ω1)

)
‖∇U [Z]‖L2(R3)‖w‖L∞(Ω1).(4.25)

Then, we note that we may rewrite:

Êrr =
6π

N

∑
κ∈K

∑
i∈Iκ

ˆ
[Tκ]2δ

w(Xi) · Uδ[Z](x)

|[Tκ]2δ|
− 6π

ˆ
Ω1

ρUδ[Z] · w

where we rewrite the first term:

6π

N

∑
κ∈K

∑
i∈Iκ

ˆ
[Tκ]2δ

w(Xi) · Uδ[Z]

|[Tκ]2δ|

=
6π

N

N∑
i=1

w(Xi) · Uδ[Z](Xi) +
6π

N

∑
κ∈K

∑
i∈Iκ

ˆ
[Tκ]2δ

w(Xi) · (Uδ[Z]− Uδ[Z](Xi))

|[Tκ]2δ|
.

Because Uδ[Z] is Lipschitz, and by the estimate (4.24) on its Lipschitz norm, we have:∣∣∣∣∣6πN ∑
κ∈K

∑
i∈Iκ

ˆ
[Tκ]2δ

w(Xi) · (Uδ[Z]− Uδ[Z](Xi))

|[Tκ]2δ|

∣∣∣∣∣ . λ[Z]‖Uδ[Z]‖C0,1(Ω1)‖w‖L∞(Ω1)

. δ9/2λ[Z]‖∇U [Z]‖L2(R3)‖w‖L∞(Ω1).

On the other hand, we have:

6π

N

N∑
i=1

w(Xi) · Uδ[Z](Xi)− 6π

ˆ
Ω1

ρUδ[Z] · w = 6π〈ρ[Z]− ρ, w · Uδ[Z]〉

so that, introducing again the control on the C0,1-norm of Uδ[Z], we derive:∣∣∣∣∣6πN
N∑
i=1

w(Xi) · Uδ[Z](Xi)− 6π

ˆ
Ω1

ρUδ[Z] · w

∣∣∣∣∣ . δ9/2‖∇U [Z]‖L2(R3)‖ρ[Z]− ρ‖
[C

0,1/2
b (R3)]∗

‖w‖C0,1/2(Ω1).

We finally obtain

(4.26) |Êrr| . δ9/2
(
λ[Z] + ‖ρ[Z]− ρ‖[C0,1/2(R3)]∗

)
‖∇U [Z]‖L2(R3)‖w‖C0,1/2(Ω1),

which completes the proof for the term Êrr.

For the remaining term, we introduce:

σ̃ =

(
1−

(
1− 1

2δ

)3
)−1

1

N |λ[Z]|3
∑
κ∈K

( ∑
i∈Iκ∩Zδ

|w(Xi)|

)
1[Tκ]2δ ,

so that:

|Ẽrr| ≤
ˆ

Ω1

σ̃(x)|U [Z](x)|dx .
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With similar arguments as in the previous computations, we have, applying (4.5):

‖σ̃‖L1(Ω1) ≤
1

N
#Zδ‖w‖L∞(Ω1) ≤

1

δ
‖w‖L∞(Ω1)

(
1 +

1

N

N∑
i=1

|Vi|2
)
.

Furthermore, we have:

‖σ̃‖L∞(Ω1) . δ
M [Z]

N |λ[Z]|3
‖w‖L∞(Ω1).

Consequently, by interpolation, we obtain:

‖σ̃‖
L

4
3 (Ω1)

.
1√
δ

(
M [Z]

N |λ[Z]|3

)1/4

‖w‖L∞(Ω1)

(
1 +

1

N

N∑
i=1

|Vi|2
) 3

4

.

Applying Sobolev embedding Ḣ1(R3) ⊂ L4(Ω1) with (4.4) we conclude that:

(4.27) |Ẽrr| . 1√
δ

(
1 +

1

N

N∑
i=1

|Vi|2
) 3

4 (
M [Z]

N |λ[Z]|3

)1/4

‖w‖C0,1/2(Ω1)‖∇U [Z]‖L2(R3) .

We conclude the estimate of Eρ[w] by adding up (4.25), (4.26), (4.27) and recalling (4.4). �

5. Proof of the main result

We are now able to prove our main result Theorem 1.1 as well as the Corollary 1.2.

We hence consider the framework of Theorem 1.1. The main idea is to split the expectation we want to
estimate into two parts: one taking into account the non-concentrated configurations (which has been treated in
Section 4), and the other taking into account the concentrated configurations (treated in Section 2).

Let us fix α ∈ (2/3, 1), η = min(1/(2C1e), 1) (see Assumption A1 or Proposition 2.4 to remind the meaning
of constant C1) and R > 0. Given N ∈ N∗ we denote:

MN = N
3(1−α)

5 and λN =

(
ηMN

N

)1/3

.

We can then introduce the corresponding decomposition of configurations with N particles:

ON =
(
ON \ (ONλN ,MN

∪ ONα )
)
∪
(
ONλN ,MN

∪ ONα
)
.

We emphasize that, since η < 1, for any ZN ∈ ON \ (ONλN ,MN
∪ONα ), the associated configuration satisfies (4.3).

5.1. Proof of Theorem 1.1. We want to compute the expectation of the distance with u := u[ρ, j]. We split
the expectation into the non-concentrated configurations and the concentrated configurations as follows

E
[
‖UN [ZN ]− u‖L2(B(0,R))

]
= E

[
1ON\(ONλN,MN∪O

N
α )(Z

N ) ‖UN [ZN ]− u‖L2(B(0,R))

]
+ E

[
1ONλN,MN∪O

N
α

(ZN ) ‖UN [ZN ]− u‖L2(B(0,R))

]
=: I1 + I2.

Let us first estimate the term I2. Since we have chosen η sufficiently small, Proposition 2.4 entails that:

P(ZN ∈ ONλN ,MN
∪ ONα ) . N−(3α−2) → 0 when N →∞.

Consequently, with Corollary 3.8 we obtain that:

E
[
1ZN∈ONλN,MN∪O

N
α
‖∇U [ZN ]‖L2(R3)

]
≤ K

N3/2
+ P(ZN ∈ ONλN ,MN

∪ ONα )
1
2 E

[
1

N

N∑
i=1

|V Ni |2
] 1

2

.
1

N
3α−2

2

.

Finally we get

I2 . E
[
1ONλN,MN∪O

N
α

(ZN ) ‖UN [ZN ]‖D(R3)

]
+ E

[
1ONλN,MN∪O

N
α

(ZN ) ‖u‖L2(B(0,R))

]
.

1

N
3α−2

2

+ P
[
ZN ∈ ONλN ,MN

∪ ONα
]
.

1

N
3α−2

2

,
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We now turn to the term I1. For N sufficiently large, noting that ‖ρN [ZN ]− ρ‖
[C

0,1/2
b (R3)]∗

≤ 2, we can apply

Theorem 4.3 choosing

δ =

 1 + ‖ρ‖L2(Ω0)(
1

N
1−α
5

+ ‖ρN [ZN ]− ρ‖
[C

0,1/2
b (R3)]∗

)


3
19

.

This yields that, for arbitrary ZN ∈ ON \ (ONλN ,MN
∪ ONα ), we have:

‖UN [ZN ]− u‖L2(B(0,R)) .

(
1 +

1

N

N∑
i=1

|V Ni |2
) 5

4 (
1 + ‖ρ‖L2(Ω0)

) 18
19

(
1

N
1−α

5

+ ‖ρN [ZN ]− ρ‖
[C

0,1/2
b (R3)]∗

) 1
19

+ ‖jN [ZN ]− j‖
[C

0,1/2
b (R3)]∗

.

Taking expectation and using the hypotheses of the theorem, this yields

(5.1)

I1 .
(1 + ‖ρ‖L2(Ω0))

18
19

N
1−α
95

E

(1 +
1

N

N∑
i=1

|V Ni |2
) 5

4


+ E

(1 +
1

N

N∑
i=1

|V Ni |2
) 5

4

‖ρ[ZN ]− ρ‖
1
19

[C
0,1/2
b (R3)]∗

+ E
[
‖j[Z]− j‖

[C
0,1/2
b (R3)]∗

]

. [M5(FN1 )]
1
2

(
(1 + ‖ρ‖L2(Ω0))

18
19

N
1−α
95

+ E
[
‖ρN [ZN ]− ρ‖

[C
0,1/2
b (R3)]∗

] 1
19

)
+ E

[
‖jN [ZN ]− j‖

[C
0,1/2
b (R3)]∗

]
. E

[
‖ρN [ZN ]− ρ‖

[C
0,1/2
b (R3)]∗

] 1
19

+ E
[
‖jN [ZN ]− j‖

[C
0,1/2
b (R3)]∗

]
+N−

(1−α)
95

. E
[
W1(ρN [ZN ], ρ)

] 1
57 + E

[
‖jN [ZN ]− j‖[C0,1

b (R3)]∗

] 1
3

+N−
(1−α)

95 ,

where we have used Lemma 2.2 in last line.

We complete the proof of (1.9) by gathering previous estimates, and the last part of the theorem immediately
follows from it. �

5.2. Proof of the Corollary 1.2. Let f satisfy the hypotheses of Corollary 1.2. We shall construct here a
sequence (FN )N∈N∗ of symmetric probability measures on ON that satisfy Assumption A1 and that is f -chaotic
with quantitative estimates (in the sense of Definition 2.1), hence also satisfies Assumption A2 thanks to
Lemma 2.3.

A classical way in statistical physics to construct chaotic probability measures in the phase space of a
N -particle system is to take the N -tensor product of a probability measure on the phase space of one particle
that we condition to the energy surface of the system. More precisely, given a probability measure f on Ω0 ×R3

we define a probability measure ΠN [f ] on ON by

(5.2) ΠN [f ](dzN ) :=W−1
N (f) 1zN∈ON f

⊗N (dzN ),

where WN (f) is the partition function

WN (f) :=

ˆ
(Ω0×R3)N

1zN∈ON f
⊗N (dzN ).

We now verify that the sequence (ΠN [f ])N∈N∗ satisfies Assumption A1. We start with a technical remark:

Lemma 5.1. For any 1 ≤ m ≤ N and N large enough there holds

1 ≤ W−1
N (f)WN−m(f) ≤ (1− 8c0N

−2‖ρ‖L∞(R3))
−m ≤ e16c0mN

−2‖ρ‖L∞(R3) ,

where c0 = |BR3 | is the volume of the unit ball in R3.
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Proof. We have

Wm+1(f) =

ˆ
(R3×R3)m+1

1(z1,...,zm)∈Om[ 1
N ]

(
m∏
i=1

1|xi−xm+1|> 2
N

)
f⊗(m+1)(z1, . . . , zm, zm+1) dz1 . . . dzm+1

=

ˆ
(R3×R3)m

{ˆ
R3×R3

m∏
i=1

(
1− 1|xi−xm+1|≤ 2

N

)
f(zm+1) dzm+1

}
1(z1,...,zm)∈Om[ 1

N ] f
⊗m(z1, . . . , zm) dz1 . . . dzm

≥
ˆ

(R3×R3)m
(1− 8mc0N

−3‖ρ‖L∞(R3))1(z1,...,zm)∈Om[ 1
N ] f

⊗m(z1, . . . , zm) dz1 . . . dzm,

We note here that, to pass from the second to the last line, we only remark that the indicator functions
deletes at most m balls of radius 2/N in R3. From the last inequality, we deduce Wm+1(f) ≥ Wm(f)(1 −
8mc0N

−3‖ρ‖L∞(R3)). We conclude the proof of the first claimed inequality by induction.

For the second inequality, observe that x 7→ 2x+ log(1− x) is nonnegative for 0 ≤ x ≤ 1/2, therefore for N
large enough (so that 16c0mN

−2‖ρ‖L∞(R3) ≤ 1) we get

(1− 8c0N
−2‖ρ‖L∞(R3))

−m ≤ e16c0mN
−2‖ρ‖L∞(R3) .

�

As a consequence we obtain the following bounds on (ΠN [f ])N∈N∗ :

Lemma 5.2. Given N sufficiently large, for any 1 ≤ m ≤ N there holds:

‖ΠN
m[f ]‖L∞x L1

v(Om[ 1
N ]) ≤ e

16c0mN
−2‖ρ‖L∞(R3) ‖ρ‖mL∞(R3),

‖|z1|k0ΠN
1 [f ]‖L1

xL
1
v(R3×R3) ≤ e16c0N

−2‖ρ‖L∞(R3)

ˆ
R3×R3

|z1|k0f(z1)dz1,

‖|v1|k0ΠN
2 [f ]‖L∞x L1

v(O2[ 1
N ]) ≤ e

32c0N
−2‖ρ‖L∞(R3)‖ρ‖L∞ sup

x1∈R3

ˆ
R3

|v1|k0f(x1, v1)dv1,

where ΠN
m[f ] denotes the m-marginal of ΠN [f ].

Proof. We write

fNm (z1, . . . , zm) ≤ W−1
N (f)1(z1,...,zm)∈Om[ 1

N ] f
⊗m(z1, . . . , zm)

ˆ
(R3×R3)N−m

∏
m+1≤i<j≤N

1|xi−xj |> 2
N

N∏
j=m+1

f(zj) dzj

≤ W−1
N (f)WN−m(f)1(z1,...,zm)∈Om[ 1

N ] f
⊗m(z1, . . . , zm).

Each estimate then follows easily by using the bound of Lemma 5.1. �

This lemma shows that (ΠN [f ])N∈N∗ satisfies Assumption A1. We shall prove now that (ΠN [f ])N∈N∗ is
f -chaotic with quantitative estimates, which hence implies that it satisfies Assumption A2. To this end, we
recall that we denote (ZN )N∈N a sequence of random variables on ON with corresponding laws (ΠN [f ])N∈N∗

and that proving that (ΠN [f ])N∈N∗ is f -chaotic reduces to measuring the expectation of the Wasserstein
W1-distance between the empirical measure µN [ZN ] and f. This is the content of the following lemma, from
which Corollary 1.2 follows straightforwardly.

Lemma 5.3. Consider the framework of Corollary 1.2. Let (ZN )N∈N∗ be a sequence of random variables on
ON with laws (ΠN [f ])N∈N∗ defined by (5.2). There holds

E[W1(ρN [ZN ], ρ)] .
1

N1/3
and E[W1(µN [ZN ], f)] .

1

N1/6
.

Proof. We shall only prove the second estimate, the first one being similar arguing with the random variable
XN on ONx (coming from ZN = (XN ,VN )).

Let (WN )N∈N∗ be a i.i.d. sequence of random variables on (R3 ×R3)N with common law f , and µN [WN ] be
the associated empirical measure. We split

W1(µN [ZN ], f) ≤W1(µN [WN ], f) + 1WN∈ON W1(µN [ZN ], µN [WN ]) + 1WN 6∈ON W1(µN [ZN ], µN [WN ]),
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which implies

E
[
W1(µN [ZN ], f)

]
≤ E

[
W1(µN [WN ], f)

]
+ E

[
1WN∈ON W1(µN [ZN ], µN [WN ])

]
+ P

[
WN 6∈ ON

] 1
2 E
[
W1(µN [ZN ], µN [WN ])

] 1
2 .

The first term on the right-hand side can be controlled by N−1/6 thanks to [9, Theorem 1], since WN is a i.i.d.
sequence of common law f and using the fact that f has support included in Ω0 ×R3 as well as a finite moment
of order 5. The second term is bounded (up to a constant) by the first one, indeed

E
[
1WN∈ON W1(µN [ZN ], µN [WN ])

]
=

ˆ
ON

ˆ
ON

W1(µN [zN ], µN [wN ])
1zN∈ON f

⊗N (dzN )

WN (f)
1wN∈ON f

⊗N (dwN )

≤ WN (f)−1 E
[
W1(µN [W̃N ], µN [WN ])

]
. E

[
W1(µN [WN ], f)

]
+ E

[
W1(µN [W̃N ], f)

]
,

where W̃N is an independent copy of WN . Finally the third term is bounded by N−1/2 since P
[
WN 6∈ ON

]
.

N−1 (thanks to a similar argument as in Lemma 2.6) and

E
[
W1(µN [ZN ], µN [WN ])

]
. E

[
M2(µN [ZN ])

]
+ E

[
M2(µN [WN ])

]
= M2(ΠN

1 [f ]) +M2(f),

which are uniformly bounded. �

Appendix A. Construction of wi

This section is devoted to the proof of Lemma 3.5 and Lemma 3.6. We recall first the frame of these
results. We assume that N ∈ N is given and strictly positive in the whole section and we drop the parameter N
in most of notations. We consider N balls Bi, i = 1, . . . , N, of centers (X1, . . . , XN ) ∈ R3N and common radii
1/N. We assume that |Xi −Xj | > 2/N for j 6= i so that these balls are disjoint.

We begin with Lemma 3.6 on the possible intersections of (B(Xi,
3

2N ))i=1,...,N . We recall the statement of
this lemma and give a proof:

Lemma A.1. Let i ∈ {1, . . . , N}. Setting

Ii := {j ∈ {1, . . . , N} s.t. B(Xi,
3

2N ) ∩B(Xj ,
3

2N ) 6= ∅},

we have that Ii contains at most 64 distinct indices.

Proof. The idea of this proof is adapted from [17].

Let i ∈ {1, . . . , N} be fixed. Without restriction we may assume that i = 1 and X1 = 0. For arbitrary
j ∈ I1 we have that B(Xj ,

3
2N ) ∩B(0, 3

2N ) 6= ∅. This entails that |Xj | ≤ 3/N and B(Xj ,
1
N ) ⊂ B(0, 4

N ). As the

B(Xj ,
1
N ) are disjoint by assumption, we have then:

4π

3N3
|I1| = |

⋃
j∈I1

B(Xj ,
1
N )| ≤ |B(0, 4

N )| ≤ 4π

3N3
64.

This completes the proof. �

We proceed with Lemma 3.5 that we recall with the notations of Section 3:

Lemma A.2. Given i ∈ {1, . . . , N}, there exists wi ∈ D(R3) satisfying

wi = Vi on Bi and wi = 0 on Bj for j 6= i ,(A.1)

Supp(wi) ⊂ B(Xi,
3

2N ),(A.2)

‖∇wi‖2L2(R3) ≤ C
|Vi|2

N

1 +
1

N

∑
j 6=i

1|Xi−Xj |< 5
2N

|Xi −Xj | −
2

N

 ,(A.3)

for a universal constant C.
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The remainder of this section is devoted to the proof of this result. Without loss of generality, we assume
that i = 1 and X1 = 0. We look for w1 of the form:

(A.4) w1(x) = w̃1(Nx), ∀x ∈ R3.

To define the constraints to be satisfied by w̃1, we introduce notations for the shape of the fluid domain after
dilation. Namely, we denote:

X̃i = NXi, B̃i = B(NXi, 1), ∀ i = 1, . . . , N.

In particular, B̃1 = B(0, 1). We want now to construct w̃1 ∈ D(R3) such that:

w̃1 = V1 on B̃1 and w̃1 = 0 on B̃j for j > 1 ,(A.5)

Supp(w̃1) ⊂ B(0, 3
2 ),(A.6)

A natural candidate for w̃1 is obtained by focusing on (A.6). Indeed, introducing a truncation function
χ0 ∈ C∞(R) which satisfies:

χ0(t) =

{
1 if t < 1,
0 if t > 1 + h0,

with h0 ∈ (0, 1/2) to be fixed later on, we may set:

w̃1,0 = ∇×
[
V1 × x

2
χ0(|x|)

]
.

This candidate satisfies indeed w̃1,0 ∈ D(R3) with

w̃1,0 = V1 on B̃1, Supp(w̃1,0) ⊂ B(0, 1 + h0) ⊂ B(0, 3
2 ),

However, it does not take into account the balls that are too close to B̃1. To match the further condition on
these balls, we modify our candidate.

For this, let fix j ∈ {1, . . . , N}. To describe the geometry between B̃1 and B̃j we introduce a system of

coordinates (x1, x2, x3) such that x3 corresponds to the coordinates directed along e3 = X̃j/|X̃j |. The associated
cylindrical coordinates read:

r =
√
x2

1 + x2
2, er =

1√
x2

1 + x2
2

(x1, x2, 0), ∀ (x1, x2, x3) ∈ R3 \ {x3 = 0}.

We remark that, in these coordinates, close to (0, 0, 1) the boundary ∂B̃1 is the graph of the function (x1, x2) 7→
γb(
√
x2

1 + x2
2) where:

γb(r) =
√

1− r2 , ∀ r ∈ (0, 1).

Furthermore, denoting by hj = dist(B̃1, B̃j), we have also that close to (0, 0, 1 + hj), the boundary ∂B̃j is the

graph of the function (x1, x2) 7→ γt(
√
x2

1 + x2
2) where:

γt(r) = 2 + hj −
√

1− r2 , ∀ r ∈ (0, 1).

Given δ > 0 we set, in these cylindrical coordinate:

Cj [δ] := {(x1, x2, x3) ∈ R3 s.t. r ∈ (0, δ) and x3 ∈ (γb(r), γt(r))},
Aj [δ] := {(x1, x2, x3) ∈ R3 s.t. r ∈ (δ/2, δ) and x3 ∈ (γb(r), γb(δ/2))}.

These notations are illustrated by Figure 1.

We note that, whatever the value of δ ∈ (0, 1) we have that Cj [δ] and Aj [δ] are Lipschitz, and that Aj [δ] ⊂ Cj [δ].
We have also the following technical property:

Proposition A.3. There exists hmax ∈ (0, 1/2) and δ0 ∈ (0, 1/2) such that, if hj < hmax the following holds
true:

i) Cj [δ0] ⊂ B(0, 3
2 ),

ii) Cj [δ0] ⊂ R3 \
⋃N
i 6=1,j B̃i,

iii) for arbitrary j′ 6= j such that hj′ < hmax, there holds Cj [δ0] ∩ Cj′ [δ0] = ∅.
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B̃1

B̃j

δ/2

δ

B̃j′

Figure 1. Notations Aj [δ] and Cj [δ]

On the left a typical configuration is presented (in 2D). The gray zone corresponds to
the set Cj [δ]. On the right is a zoom on Cj [δ] where the subset Aj [δ] appears in the red
color. We emphasize that the 3D geometry is obtained by revolution around the axis of
the figure so that Aj [δ] is indeed connected.

Proof. We compute restrictions on the values for δ0 and hmax in order to fulfill the three conditions i), ii) and
iii). This will yield an open set of admissible values for δ0 and hmax.

For the proof, we only give two draws which explain where the restrictions come from. Let j ∈ {1, . . . , N}
such that dist(B̃1, B̃j) =: hj < hmax. In Figure 2, we illustrate that there exists a ball Vj centered in Xj1 (the

unique point in the closure of B̃j realizing the distance between B̃1 and B̃j) such that Cj [δ] (in blue on the
figure) is contained in Vj (empty circle on the figure). The radius r0 of this neighborhood is controlled by hmax
and δ. In particular, for hmax and δ0 sufficiently small we have B(Xj1, r0) ⊂ B(0, 1 + hmax + r0) ⊂ B(0, 3/2)
and i) is realized.

Second, we illustrate with Figure 3, that given another particle B̃j′ , the distance between B̃j′ and the segment

[X̃1, X̃j ] joining the centers of B̃1 and B̃j is minimal when B̃j′ is in simultaneous contact with B̃1 and B̃j (several

configurations are provided in red, the optimal one is the most opaque one). The minimal distance r
(j)
min between

B̃j′ and [X̃1, X̃j ] is then a decreasing function of hj vanishing when hj = 2(
√

3− 1). The minimal distance r(j,j′)

between the point Xj′1 (the point in the closure of B̃j′ realizing the distance with B̃1) and Xj1 is also realized
with this configuration. It is then a continuous function of hj which converges to 1 when hj → 0. So, with the

notations of the proof, for hmax and δ0 small we have that r0 < r
(j)
min and 2r0 < r(j,j′) so that ii) and iii) hold

true. �

With the proposition above, we can now fix hmax, δ0 sufficiently small so that the conclusion of the proposition
above holds true. Associated with δ0 we set:

h0 =

√√√√√δ2
0

4
+

2−

√
1−

∣∣∣∣δ02
∣∣∣∣2
2

− 1.

If necessary, we restrict the size of δ0 so that h0 < min(1/2, hmax). Associated with hmax we introduce:

J :=
{
j ∈ {2, . . . , N} s.t. dist(B̃1, B̃j) < hmax

}
,

We note that, by construction, we do have h0 > 0 and that:

• since h0 < hmax, w̃1,0 vanishes on B̃i for i /∈ J .
• for j ∈ J , χ0 vanishes on ∂Cj ∩ B̃j at a distance larger than δ0/2 from the axis Re3.
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B̃1

B̃j

Xj1

hj
δ

r0

Figure 2. Construction of a neighborhood of Xj1 containing Cj .

Furthermore, the (Cj)j∈J are disjoint and do not intersect the (B̃i)i=1,...,N . So, in what follows, we construct
w̃1 on the (Cj)j∈J . We shall then extend w̃1 by w̃1,0 on the remaining fluid domain and by the expected values

on the (B̃i)i=1,...,N .

Let j ∈ J and make precise wj = (w̃1)|Cj . We decompose wj = w
(1)
j − w

(2)
j . For w

(1)
j , we set:

w
(1)
j (x) = ∇×

[
V1

2
× (x− e3) ζ0(r)P

(
γt(r)− z

γt(r)− γb(r)

)
+ (1− ζ0(r))χ0(|x|)V1

2
× x
]

where P (t) = (3t2 − 2t3) for t ∈ R and ζ0 ∈ C∞(R) is a truncation function such that:

ζ0(t) =

{
1 if t < δ0/2,

0 if t > 3δ0/4.

Clearly, we have that w
(1)
j ∈ C∞(Cj) is divergence-free. Expanding the curl operator, we obtain:

(A.7) w
(1)
j (x) =


0 if x ∈ ∂Cj ∩ ∂B̃j (i.e.z = γt(r)),

V1 −
ζ ′0(r)

2
(V1 × e3)× er if x ∈ ∂Cj ∩ ∂B̃1 (i.e. z = γb(r)),

w1,0(x) if x ∈ ∂Cj \
(
∂B̃1 ∪ ∂B̃j

)
(i.e. r = δ).

All these identities derive from the choices for χ0, ζ0 and P. To obtain the first of these identities, it is worth
noting that, with our choice for h0, δ0 the function x 7→ (1− ζ0(r))χ0(r) vanishes on ∂B̃j ∩ ∂Cj .

Finally, we obtain that there exists a constant Cmax depending only on (hmax, δ0) such that:

(A.8) ‖∇w(1)
j ‖

2
L2(Cj)

≤ Cmax|V1|2

hj
.

Indeed, away from the axis (i.e. on Cj ∩ {r > δ0/2}), w(1)
j depends smoothly on the parameter hj . Hence, the

contribution to ‖∇w(1)
j ‖L2 is bounded by C|V1|2 where C is independent of hj and depends only on δ0, hmax.
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B̃1

B̃j

Xj′1

Xj1

r(j,j′)

r
(j)
min

Figure 3. Minimizing configuration

When r < δ0/2, we have:

w
(1)
j (x) = ∇×

[
V1

2
× (x− e3)P

(
z − γb(r)

γt(r)− γb(r)

)]
Explicit computations show that, the worst term in |∇w(1)

j | corresponds to two differentiations of the P -term
w.r.t. z, which we may bound by

|∂zw(1)
j | ≤

|V1|
2
|x− e3|

∣∣∣∣∂zzP ( z − γb(r)
γt(r)− γb(r)

)∣∣∣∣ ≤ C|V1|(r + |z − γb(0)|) 1

(γt(r)− γb(r))2
.

Remarking that |z − γb(0)| ≤ C|hj + r| on Cj , we derive

ˆ
Cj∩{r<δ0/2}

|∇w(1)
j (x)|2dx ≤ C|V1|2

ˆ δ0

0

|hj + r|2rdr
(γt(r)− γb(r))3

.

Combining then that γt(r)− γb(r) ≥ hj + cr2 on (0, δ0) for some c > 0 (since δ0 < 1/2) and a change of variable

r =
√
hjs in the integral, we obtain (A.8). More details on these computations can be found in [14].

In order that wj fits the right boundary condition on ∂B̃1, we add a corrector w
(2)
j that compensate the error

term that appears on the second line of (A.7), namely:

w∗j (x) =
ζ ′0(r)

2
[V1 × e3]× er =

ζ ′0(r)

2
(V1 · er)e3,

To construct w
(2)
j , we note that w∗j is smooth and has compact support in ∂Aj ∩ ∂B̃1. Hence, we may extend w∗j

by 0 on ∂Aj \ ∂B̃1. We obtain then a vector field w∗j ∈ C∞(∂Aj) such that, by symmetry:

ˆ
∂Aj

w∗j · ndσ =

ˆ
∂Aj∩∂B̃1

w∗j (x) · ndσ = 0
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Since, there exists a Bogovskii operator on the Lipschitz domain Aj , we construct w
(2)
j ∈ H1(Aj) such that:

(A.9) divw
(2)
j = 0 in Aj w

(2)
j = w∗j on ∂Aj .

and such that:

‖w(2)
j ‖H1(Aj) ≤ C‖w

∗
j ‖H1/2(∂Aj).

We note here that all the Aj are isometric so that this last constant C is fixed by the values of δ0 only and does
not depend on j. Hence, there exists Cmax depending only on δ0 for which:

(A.10) ‖w(2)
j ‖H1(Aj) ≤ Cmax|V1|.

We note also that, on ∂Aj , w
∗
j vanishes outside ∂Aj ∩ ∂B̃1 so that we may extend it by 0 on Cj \ Aj . We keep

the same notations for simplicity. This yields a divergence-free vector-field w
(2)
j ∈ H1(Cj) defined on Cj .

By combination, it is then straightforward that wj = w
(1)
j − w

(2)
j ∈ H1(Cj) satisfies:

i) divwj = 0 on Cj
ii) the following boundary conditions on ∂Cj :

wj(x) =


0 if x ∈ ∂Cj ∩ ∂B̃j
V1 if x ∈ ∂Cj ∩ ∂B̃1

w1,0(x) if x ∈ ∂Cj \ (∂B̃1 ∪ ∂B̃j)

iii) the bounds (with a constant Cmax depending only on δ0, hmax):

‖∇w(1)
j ‖

2
L2(Cj)

≤ Cmax|V1|2
[
1 +

1

hj

]
.

In particular, the above construction of w̃1 on Cj for fixed j ∈ J , satisfies the right boundary conditions in
order to extend it by w̃1,0 on the remaining fluid domain. So, we set:

(A.11) w̃1(x) =


V1 if x ∈ B̃1

wj(x) if x ∈ Cj , j ∈ J
0 if x ∈ B̃j , j 6= 1

w1,0(x) else.

Combining (A.7)-(A.9) we obtain that w̃1 ∈ H1(R3) is divergence-free and satisfies the required conditions on

the obstacles (B̃i)i=1,...,N . Furthermore, combining (A.7)-(A.10), we obtain a constant Cmax depending only on
δ0, hmax such that:

‖∇w̃1‖2L2(R3) ≤ Cmax|V1|2
1 +

∑
j∈J

1

hj

 ≤ Cmax|V1|2
1 +

N∑
j=2

1|X̃j |<5/2

|X̃j | − 2


The associated vector-field w1 (via the scaling (A.4)) satisfies then all the requirements of Lemma A.2.

Appendix B. Analysis of the cell problem

In this appendix, we fix (N,M, λ) ∈ (N \ {0})2 × (0,∞), and a divergence-free w ∈ C∞c (R3). We denote T
an open cube of width λ and Bi = B(Xi,

1
N ) ⊂ T for i = 1, . . . ,M. We assume further that there exists dm

satisfying

(B.1) min
i=1,...,M

{
dist(Xi, ∂T ),min

j 6=i
(|Xi −Xj |)

}
≥ dm >

4

N
.

We consider the Stokes problem:

(B.2)

{
−∆u+∇p = 0 ,

div u = 0 ,
in F = T \

M⋃
i=1

Bi ,

completed with boundary conditions

(B.3)

{
u(x) = w(x) , in Bi , ∀ i = 1, . . . ,M ,

u(x) = 0 , on ∂T .
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Assumption (B.1) entails that the Bi do not intersect and do not meet the boundary ∂T. So, the set T \
⋃M
i=1Bi

has a Lipschitz boundary that one can decompose in M + 1 connected components corresponding to ∂T and
∂Bi for i = 1, . . . ,M.

For any i = 1, . . . ,M, direct computations show that:ˆ
∂Bi

w · ndσ =

ˆ
Bi

divw = 0.

Hence, the problem (B.2)-(B.3) is solved by applying [13, Theorem 3] and it admits a unique generalized solution
u ∈ H1(F). We want to compare this solution with:

us(x) =

M∑
i=1

GN [w(Xi)](x−Xi),

where, for arbitrary v ∈ R3, GN [v] is the unique vector-field that can be associated to a pressure PN [v] in order
to form a pair solution to the Stokes problem outside B(0, 1/N). Explicit formulas for these solutions can be
found in standard textbooks:

GN [v](x) :=
1

4N

(
3

|x|
+

1

N2|x|3

)
v +

3

4N

(
1

|x|
− 1

N2|x|3

)
v · x
|x|2

x ,(B.4)

PN [v](x) :=
3

2N

v · x
|x|3

.(B.5)

The main result of this appendix section reads:

Proposition B.1. There exists a constant K independent of (N,M, dm, w, λ) for which:

‖(u− us)‖L6(F) + ‖∇(u− us)‖L2(F) ≤ K
[
‖w‖C0,1/2(T ) + ‖∇w‖L6(T )

]√M

N

(
1√
N

+

√
M

Ndm

)
.

Proof. The proof is an adaptation to our notations and assumptions of [13, Proposition 7]. We split the error
term into two pieces. First, we reduce the boundary conditions of the Stokes problem (B.2)-(B.3) to constant
boundary conditions. Then, we compare the solution to the Stokes problem with constant boundary conditions
to the combination of Stokeslets us. In the whole proof, the symbol . is used when the implicit constant in the
written inequality does not depend on N,M, dm, w and λ.

So, we introduce uc the unique generalized solution to the Stokes problem on F with boundary conditions:

(B.6)

{
uc = w(Xi) , in Bi , ∀ i = 1, . . . ,M ,

uc = 0 , on ∂T .

Again, existence and uniqueness of this velocity-field holds by applying [13, Theorem 3]. We split then:

‖(u− us)‖L6(F) ≤ ‖(u− uc)‖L6(F) + ‖(uc − us)‖L6(F) ,

‖∇(u− us)‖L2(F) ≤ ‖∇(u− uc)‖L2(F) + ‖∇(uc − us)‖L2(F).

To control the first term on the right-hand sides, we note that (u− uc) is the unique generalized solution to the
Stokes problem on F with boundary conditions:{

(u− uc)(x) = w(x)− w(Xi) , in Bi , ∀ i = 1, . . . ,M ,

(u− uc)(x) = 0 , on ∂T .

Hence, by the variational characterization of [13, Lemma 4], ‖∇(u−uc)‖L2(F) realizes the minimum of ‖∇w̃‖L2(F)

amongst {
w̃ ∈ H1(F) s.t. div w̃ = 0 , w̃|∂T = 0 , w̃|∂Bi = w(·)− w(Xi) , ∀ i = 1, . . . ,M

}
.

We construct thus a suitable w̃ in this space. We set:

w̃ =

M∑
i=1

w̃i

with, for i = 1, . . . ,M :

w̃i =
(
χN (· −Xi)(w(·)− w(Xi))−BXi,

1
N ,

2
N

[
x 7→ (w(x)− w(Xi)) · ∇χN (x−Xi)

])
.
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In this definition χN is again chosen truncation function that between B(0, 1
N ) and B(0, 2

N ). We assume further

that χN is obtained from χ1 by dilation. The operator B
Xi,

1
N ,

2
N

denotes the Bogovskii operator on the annulus

A(Xi,
1

N
,

2

N
) = B(0, 2

N ) \B(0, 1
N ).

The properties of this operator are analyzed in [13, Appendix A] (though these results are nowadays classical
and can also be found in [1] for instance). It is straightforward to verify that the mean of x 7→ (w(x)− w(Xi)) ·
∇χN (x−Xi) vanishes so that the above vector-field w̃i is well-defined. We note that w̃i has support in B(Xi,

2
N )

so that, as dm > 4/N, the w̃i have disjoint supports inside T. This yields that w̃ is indeed divergence-free and
fits the required boundary conditions. Furthermore, there holds:

‖∇w̃‖L2(F) ≤

[
M∑
i=1

‖∇w̃i‖2L2(B(Xi,
2
N ))

] 1
2

.

For i ∈ {1, . . . ,M} we have by direct computations:

‖∇χN (· −Xi)(w(·)− w(Xi))‖2L2(B∞(XNi ,
2
N )) .

‖w‖2
C0,1/2

N2
,

‖χN (· −Xi)∇(w(·)− w(Xi))‖2L2(B∞(Xi,
2
N )) .

‖w‖2W 1,6(T )

N2
,

and, by applying [13, Lemma 20]:

‖∇BXNi ,
1
N ,

2
N

[
x 7→ (w(x)− w(Xi)) · ∇χN (x−Xi)

]
‖2L2(B∞(Xi,

2
N ))

. ‖x 7→ (w(x)− w(Xi)) · ∇χN (x−Xi)‖2L2(B(Xi,
2
N ))

.
‖w‖2

C0,1/2(T )

N2
.

Gathering all these inequalities in the computation of w̃ yields finally:

‖∇w̃‖L2(F) .
√
M
‖w‖C0,1/2(T ) + ‖w‖W 1,6(T )

N
.

The variational characterization of generalized solutions to Stokes problems entails that we have the same bound
for (u− uc). At this point, we argue that the straightforward extension of u and uc (by w and w(Xi) on the Bi
respectively) satisfy (u− uc) ∈ H1

0 (T ) ⊂ L6(T ) so that

‖u− uc‖L6(F) ≤ ‖u− uc‖L6(T ) . ‖∇(u− uc)‖L2(T )

.

(
‖∇(u− uc)‖2L2(F) +M

‖w‖2W 1,6(T )

N2

) 1
2

.
√
M
‖w‖C0,1/2(T ) + ‖w‖W 1,6(T )

N
.

We emphasize that, by a scaling argument, the constant deriving from the embedding H1
0 (T ) ⊂ L6(T ) does not

depend on λ so that it is not significant to our problem.

We turn to estimating uc − us. Due to the linearity of the Stokes equations, we split

uc =

M∑
i=1

uc,i,

where uc,i is the generalized solution to the Stokes problem on F with boundary conditions:{
uc,i = w(Xi) , on ∂Bi ,

uc,i = 0 , on ∂T ∪
⋃
j 6=i ∂Bj .

We have then

(B.7) ‖∇(uc − us)‖L2(F) ≤
M∑
i=1

‖∇(uc,i −GN [w(Xi)](· −Xi))‖L2(F).
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Similarly, we expand :

us =

M∑
i=1

Gi , where Gi(x) = GN [w(Xi)](x−Xi) , ∀x ∈ R3.

For i ∈ {1, . . . ,M} we extend uc,i by 0 on R3 \ T and Bj for j 6= i. The extension we still denote by uc,i
satisfies uc,i ∈ H1(R3 \Bi), it is divergence-free and constant on ∂Bi. In particular, we have uc,i ∈ D(R3 \Bi).
Consequently, uc,i −Gi ∈ D(R3 \Bi) and:

‖∇(uc,i −Gi)‖2L2(F) ≤
ˆ
R3\Bi

|∇uc,i −∇Gi|2

≤
ˆ
R3\Bi

|∇uc,i|2 − 2

ˆ
R3\Bi

∇uc,i : ∇Gi +

ˆ
R3\Bi

|∇Gi|2 .

To compute the product term, we apply that uc,i and Gi = GN [w(Xi)](· −Xi) have the same trace on ∂Bi and

that Ui is a generalized solution to the Stokes problem on R3 \Bi. So, integrals of the form
´
R3\Bi ∇Gi : ∇w

(for w ∈ D(R3 \Bi)) depend only on the trace of w on ∂Bi. This entails that:ˆ
R3\Bi

∇uc,i : ∇Gi =

ˆ
R3\Bi

|∇Gi|2 ,

and we have:

(B.8) ‖∇(uc,i −Gi)‖2L2(F) ≤
ˆ
R3\Bi

|∇uc,i|2 −
ˆ
R3\Bi

|∇Gi|2 .

To conclude, we find a bound from above forˆ
R3\Bi

|∇uc,i(x)|2dx =

ˆ
F
|∇uc,i(x)|2dx.

As uc,i is a generalized solution to a Stokes problem on F , this can be done by constructing a divergence-free w̄i
satisfying the same boundary condition as uc,i. We define:

w̄i = χdm/4(· −Xi)Gi −BXi,
dm
4 , dm2

[
x 7→ Gi(x) · ∇χdm/4(x−Xi)

]
where χdm/4 truncates between B(0, dm/4) and B(0, dm/2). As previously, we have here a divergence-free
function which satisfies the right boundary conditions because χdm/4(· −Xi) = 1 on Bi (since dm/4 > 1/N) and
vanishes on all the other boundaries of ∂F (since the distance between one hole center and the other holes or ∂T
is larger than dm − 1/N > dm/2). Again, similarly as in the computation of w̃i we apply the properties of the
Bogovskii operator BXi,

dm
4 , dm2

and there exists an absolute constant K for which:

‖∇w̄i‖2L2(F) ≤
ˆ
R3\Bi

|χdm/4(· −Xi)∇Gi|2

+K

(ˆ
A(Xi,

dm
4 , dm2 )

|∇Gi(x)|2 + |∇χdm/4(x−Xi)⊗Gi(x)|2dx

)
.

As we have the same bound for uc,i, we plug the right-hand side above into (B.8) and get:

‖∇(uc,i −Gi)‖2L2(F) .
ˆ
R3\B(Xi,

dm
4 )

|∇Gi(x)|2dx+

ˆ
A(Xi,

dm
4 , dm2 )

|∇χdm/4(x−Xi)⊗Gi(x)|2dx .

With the explicit decay properties for Gi (see (B.4)) and ∇χdm/4 we derive:

ˆ
R3\B(Xi,

dm
4 )

|∇Gi(x)|2dx+

ˆ
A(Xi,

dm
4 , dm2 )

|∇χdm/4(x−Xi)⊗Gi(x)|2dx .
‖w‖2L∞(T )

N2dm
.

Combining these bounds for i = 1, . . . ,M in (B.7) we get:

‖∇(uc − us)‖L2(F) ≤
M‖w‖L∞(T )

N
√
dm

.

By similar arguments, we also have:

‖uc − us‖L6(F) = ‖uc − us‖L6(T ) ≤
M∑
i=1

‖uc,i −Gi‖L6(R3\Bi).
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As uc,i, Gi ∈ D(R3 \Bi) and uc,i, Gi share the same value on ∂Bi, there holds uc,i −Gi ∈ D0(R3 \Bi) and we
may use the classical inequality (see [10, (II.6.9)]):

‖uc,i −Gi‖L6(R3\Bi) . ‖∇uc,i −∇Gi‖L2(R3\Bi) , ∀ i = 1, . . . ,M ,

(again the constant arising from this embedding does not depend on N by a standard scaling argument). This
yields again the bound:

‖(uc − us)‖L6(F) ≤
M‖w‖L∞(T )

N
√
dm

.

Finally, combining the error terms between uc and us and between u and uc we obtain

‖(u− us)‖L6(F) + ‖∇(u− us)‖L2(F) ≤ K
√
M

N

(
1√
N

+

√
M

Ndm

)[
‖w‖C0,1/2(T ) + ‖∇w‖L6(T )

]
.

This ends the proof. �

We note that, when we apply Proposition B.1 in this article, we will choose M ≥ 1 and dm that has to be
small. In that case we have that

1√
N
≤ 2

√
M

Ndm
,

and the result of Proposition B.1 reads:

‖(u− us)‖L6(F) + ‖∇(u− us)‖L2(F) ≤ K
[
‖w‖C0,1/2(T ) + ‖∇w‖L6(T )

] M

N
√
dm

.

Appendix C. Analysis of some constants

In this section, we consider the problem of finding constants for the Poincaré-Wirtinger inequality and the
Bogovskii operator on a cubic annulus A(0, 1 − 1/δ, 1) :=] − 1, 1[3\[−(1 − 1/δ), 1 − 1/δ]3. In both proofs, we
proceed by change of variables (since only the asymptotics of the constant when δ →∞ is needed). For this, we
fix δ > 2. We introduce a odd strictly increasing application χδ ∈ C2([−1, 1]) such that

χδ([0, 1/2]) = [0, 1− 1/δ], χδ(1) = 1.

For this, we introduce an even ζ ∈ C∞(R) such that:

1[−1/4,1/4] ≤ ζ ≤ 1[−1/2,1/2].

We fix a constant k to be chosen later on and we define χ′δ as the interpolation between 2(1− 1/δ) on [0,1/2]
and k on [1/2 + 1/δ, 1] that we integrate from t = 0. This means:

χδ(x) =

ˆ x

0

2(1− 1/δ)ζ(δ(s− 1/2)+) + k(1− ζ(δ(s− 1/2)+)ds.

With this choice, we fix k so that χδ(1) = 1 yielding:

k =
1− 2(1− 1/δ)

´ 1

0
ζ(δ(s− 1/2)+)ds´ 1

0
(1− ζ(δ(s− 1/2)+)ds

=
1− 2(1− 1/δ)(1/2 +

´ 1/δ

0
ζ(δs)ds)´ 1/2

0
(1− ζ(δs))ds

= O

(
1

δ

)
.

We emphasize that, due to our choice for ζ, we have
´ 1

0
ζ(s)ds < 1/2. This entails that we have also k > 0 and

χδ is indeed strictly increasing.

Consequently, we have that:

• χδ realizes a C2-diffeomorphism from [−1, 1] to [−1, 1] such that χδ([−1/2, 1/2]) = [−(1− 1/δ), 1− 1/δ],
• 1/δ . χ′δ(y) ≤ 2 and |χ′′δ (y)| . δ for any y ∈ [−1, 1].

We introduce σδ its converse mapping. It satisfies:

• σδ([−(1− 1/δ), 1− 1/δ]) = [−1/2, 1/2],
• 1/2 ≤ σ′δ(x) ≤ δ and |σ′′δ (x)| . δ4 for any x ∈ [−1, 1].

Finally, we denote Xδ and Yδ the corresponding C2-diffeomorphisms between A(0, 1/2, 1) and A(0, 1− 1/δ, 1) :

Xδ : A(0, 1/2, 1) −→ A(0, 1− 1/δ, 1)
(y1, y2, y3) 7−→ (χδ(y1), χδ(y2), χδ(y3)))

Yδ : A(0, 1− 1/δ, 1) −→ A(0, 1/2, 1)
(x1, x2, x3) 7−→ (σδ(x1), σδ(x2), σδ(x3)))

We start with the Poincaré-Wirtinger inequality. Our main result reads:
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Proposition C.1. There holds CPW [δ] . δ. Namely, given f ∈ L2
0(A(0, 1− 1/δ, 1)) ∩H1(A(0, 1− 1/δ, 1)), we

have:

(C.1)

ˆ
A(0,1−1/δ,1)

|f(x)|2dx . δ2

ˆ
A(0,1−1/δ,1)

|∇f(x)|2dx.

Proof. We fix f ∈ L2
0(A(0, 1− 1/δ, 1)) ∩H1(A(0, 1− 1/δ, 1)) and, with the previous notations, let us consider:

f̃(y) = f(Xδ(y))−
 
f̃ , ∀ y ∈ A(0, 1/2, 1),

with  
f̃ :=

ˆ
A(0,1/2,1)

f(Xδ(y))dy.

Standard computations show that f̃ ∈ L2
0(A(0, 1/2, 1)) ∩H1(A(0, 1/2, 1)) so that, by the Poincaré-Wirtinger

inequality we have: ˆ
A(0,1/2,1)

|f̃(y)|2dy .
ˆ
A(0,1/2,1)

|∇f̃(y)|dy.

Conversely, there holds:

f(x) = f̃(Yδ(x)) +

 
f̃ , ∀x ∈ A(0, 1− 1/δ, 1).

Hence, because f is mean-free on A(0, 1− 1/δ, 1), there holds:

ˆ
A(0,1−1/δ,1)

|f(x)|2dx ≤
ˆ
A(0,1−1/δ,1)

|f(x)|2 + |A(0, 1/2, 1)|
[ 

f̃

]2

≤
ˆ
A(0,1−1/δ,1)

∣∣∣∣f(x)−
 
f̃

∣∣∣∣2 dx

≤
ˆ
A(0,1−1/δ,1)

|f̃(Yδ(x))|2dx

We can then transform the geometry to go back in the A(0, 1/2, 1) and apply the previous inequalities on σ′δ :

ˆ
A(0,1−1/δ,1)

|f(x)|2dx ≤

(
3∏
i=1

max
xi∈[0,1]

1

σ′δ(xi)

) ˆ
A(0,1−1/δ,1)

|f̃(Yδ(x))|2
3∏
i=1

σ′δ(xi)dxi

.
ˆ
A(0,1/2,1)

|f̃(y)|2dy

.
ˆ
A(0,1/2,1)

|∇f̃(y)|2dy.

At this point, we compute ∇f̃ with respect to ∇f and apply the previous inequalities on χ′δ:

ˆ
A(0,1/2,1)

|∇f̃(y)|2dy .
ˆ
A(0,1/2,1)

3∑
i=1

χ′δ(yi)
2|∂if(Xδ(y))|2dy

.
ˆ
A(0,1/2,1)

3∑
i=1

χ′δ(yi)∏
j 6=i χ

′
δ(yj)

|∂if(Xδ(y))|2
3∏
j=1

χ′δ(yj)dyj

. δ2

ˆ
A(0,1−1/δ,1)

|∇f(x)|dx.

This ends the proof. �

Finally, we consider the Bogovskii operator on the annulus:

Proposition C.2. There holds CB[δ] . δ9/2. Namely, given f ∈ L2
0(A(0, 1−1/δ, 1)) there exists u ∈ H1

0 (A(0, 1−
1/δ, 1)) such that

div u = f on A(0, 1− 1/δ, 1)

‖∇u‖L2(A(0,1−1/δ,1)) . δ
9/2‖f‖L2(A(0,1−1/δ,1))
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Proof. We provide a proof by change of variable as for the previous proposition. Given f ∈ L2
0(A(0, 1− 1/δ, 1))

we define

f̂(y) =

3∏
i=1

χ′δ(yi)f(Xδ(y)) , ∀ y ∈ A(0, 1/2, 1).

Straightforward computations show that f̂ ∈ L2
0(A(0, 1/2, 1)). Consequently, there exists û ∈ H1

0 (A(0, 1/2, 1))
such that:

div û = f̂ on A(0, 1/2, 1)

‖∇û‖L2(A(0,1/2,1)) . ‖f̂‖L2(A(0,1/2,1)).

We set then:

u(x) =

∏
6̀=i

σ′δ(x`)ûi(Yδ(x))


i=1,2,3

∀x ∈ A(0, 1− 1/δ, 1).

Since σ′δ(x`)χ
′
δ(σδ(x`)) = 1, we may expand the divergence to prove:

divu(x) = f(x) , ∀x ∈ A(0, 1− 1/δ, 1).

It is straightforward that u = 0 on the boundaries of A(0, 1− 1/δ, 1), and we are left with computing the size of
its gradient. We note that (introducing Kron the Kronecker symbol)

∂jui(x) = σ′δ(xj)

∏
` 6=i

σ′δ(x`)

 ∂j ûi(Yδ(x)) + (1−Kron[j, i])σ”
δ (xj)

∏
6̀=i,j

σ′δ(x`)

 ûi(Yδ(x)).

Consequently:
ˆ
A(0,1−1/δ,1)

|∂jui(x)|2 .
ˆ
A(0,1−1/δ,1)

(
δ4|∂j ûi(Yδ(x))|2 + δ9|ûi(Yδ(x))|2

) 3∏
`=1

σ′δ(x`)dx`

. δ9

ˆ
A(0,1/2,1)

[|∂j û(y)|2 + |û(y)|2]dy.

Here we apply the classical Poincaré inequality in H1
0 (A(0, 1/2, 1)) and the definition of û, which yieldsˆ

A(0,1−1/δ,1)

|∂jui(x)|2 .
ˆ
A(0,1/2,1)

|f̂(y)|2dy.

We end up by dominating the right-hand side w.r.t. f recalling the bound above for χ′δ :

ˆ
A(0,1/2,1)

|f̂(y)|2dy =

ˆ
A(0,1/2,1)

3∏
i=1

χ′δ(yi)|f(Xδ(yi))|2
3∏
i=1

χ′δ(xi)dxi ,

.
ˆ
A(0,1−1/δ,1)

|f(x)|2dx.

�
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