NON-CUTOFF BOLTZMANN EQUATION WITH SOFT POTENTIALS

IN THE WHOLE SPACE

KLEBER CARRAPATOSO AND PIERRE GERVAIS

ABSTRACT. We prove the existence, uniqueness and convergence of global solutions to
the Boltzmann equation with non-cutoff soft potentials in the whole space when the

initial data is a small perturbation of a Maxwellian with polynomial decay in velocity.

Our method is based in the decomposition of the desired solution into two parts: one with
polynomial decay in velocity satisfying the Boltzmann equation with only a dissipative
part of the linearized operator; the other with Gaussian decay in velocity verifying the
Boltzmann equation with a coupling term.
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Consider the Boltzmann equation for the unknown F = F(t,z,v), with t > 0, € R3?,

and v € R3:
(1.1) OF +v-V,F=Q(F,F)

complemented with an initial data Fy = Fy(x,v). The collision operator @ is bilinear and
acts only on the velocity variable v € R3, which represents the fact that collisions are

supposed to be localized in space, and it reads

12 QU = [ [ B —v.0) [F)e() - f)g(v)] dodo.

The pre- and post-collision velocities (v/,v)) and (v,v,) are given by
v | — v

2 2

R

1. "=

/
and v, =
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2 K. CARRAPATOSO AND P. GERVAIS

which is one possible parametrization of the conservation of momentum and energy in an
elastic collision

v+ =v4uv, and |24 [0L2 = v]? + v

The collision kernel B(v — v, o) encodes the physics of the interaction between particles.
It is assumed to be nonnegative and to depend only on the relative velocity |v — v,| and

(v—v4)

the angle cosf = o - T—

as
B(v —vy,0) = |v — v|7b(cos 6),

where —3 < v < 1 and the angular part b is a smooth function (except maybe at 6§ = 0).
As it is standard now, we may suppose, without loss of generality, that 6 € [0, 7/2] by
replacing B by its symmetrized version if necessary.

In this paper we shall consider the case of non-cutoff soft potentials, more precisely
we assume that b is an implicit function that is locally smooth and has a non-integrable
singularity at 8§ = 0 as

(1.4) sin 6 b(cos ) 2 Cy6~ 1728 with s € (0,1),

for some constant Cp, > 0, and

(1.5) —1<7y+2s<0 and —-3/2—-s5s<7y<0.

Let p(v) = (27)3/2¢711*/2 be the standard Maxwellian and define the perturbation
F=p+f

which satisfies

(16) {&f%—v-vxf:.ff%—Q(f, f)

fit=0 = fo=Fo— p

where .Z is the linearized collision operator given by

We also denote by A the full linearized operator
A = .Z —U- Vx-

It is well known (see for instance [40]) that .Z is a nonnegative self-adjoint operator on
the space L2(u~1/2) = {9:R* =R Jgslg|°+! dv < oo} with kernel given by

ker(.,?) = Span{u, V1, V2, U3 |U’2,U,}

We define 7 to be the orthogonal projection onto ker(.Z) so that we can decompose

f=nf+ft fr=f-nf

W) af = (ol +ulfl v+ o DY,
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1.1. Main result. Before stating our main result we shall introduce the functional spaces
we work with. If X is a function space and w a non-negative function, we define the
weighted space X (w) as the space associated to the norm

£l x w) = llwfllx-

In particular, for a weight function m = m(v), we consider the weighted Lebesgue space
L2L2(m) as the space associated to the inner product

(f9)1212(m) = (mf,mg)r2 |
and the corresponding norm
HfHLng(m) = ||meLg,v,
where (-,-)z2 ~and || - [|f2 = denote the usual inner product and norm of L*(R2 x RY).

We consider polynomial weight functions m(v) = (v)* := (1 4 |v|?)*/2 with k > 0, and
we introduce the anisotropic dissipation space in velocity H;*(m), inspired from the one
presented in [28], as the space associated to the norm

A8 ey = 102 gy + e
2. . Y _ / 2
(1.9) TP /R3XR3X52b(c080)u(v*)<v*) (F - F)? do dv. o,

where we use the shorthand F = F(v) := m(v)(v)"/2f(v) and F' = F(v') recalling that v’
is defined in (1.3), and which satisfies the following bound (see Lemma 2.7):

1€YY" Fllrrsmy S WF gz my S I1C0Y2 £l g -

For functions f = f(z,v) depending on the position x and velocity v variables, we also
define the polynomially weighted spaces X(m), X*(m) and Y (m) as the spaces associated
to the norms

(1.10) 1 %y = 1172 gy + 10DV F 172y
(1.11) 1 W my 2= 172 5o oy + 10D T V2 F 12 g5y
and

(1.12) 11y = 1 Wy + 1 Vo f g2
respectively.

Finally, we denote the Fourier transform f — f with respect to the space variable
z € R3 defined as

~ 1

f(&v) = (2n)2 /R3 e f(x,v)dz, VEeR3,

We can now state our main result:

Theorem 1.1. Assume (1.4)—~(1.5) hold. Consider k > 13/2 + 7|y|/2 + 8s and define

the weight function m = (v)*. There exists eg > 0 small enough such that any initial

data fo € X(m) satisfying | follxm) < €0 gives rise to a unique global weak solution
f€L®Ry;X(m))NL2(Ry;Y(m)) to (1.6), which satisfies the energy estimate

(1.13) sup [| £ (£) 5 (m) +/ 1F O3 my 4t S 1 foll X (my-
t>0 0

If moreover the initial data fo € LZJL%((v)_BSm) satisfies || follx (m) + HfOHLgL%((v)*SSm) <

go with p € (2,00], then for any 0 < ¥ < % (% — %) and ko < k — |y| we have the decay
estimate

(1.14) 1FOllxomoy S (1487 (I follxim + 1 Folzzzaquy-sem ) -

for all t =0, where mg = (v)*o.
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We now briefly review the known results for the Boltzmann equation near Maxwellian
in the torus T2 and the whole space R3.

We start by considering the case of cutoff potentials, which corresponds to angular
kernels b for which the singularity in (1.4) is removed by assuming b integrable. By working
near equilibrium, Grad [22] constructed in 1965 the first spatially inhomogeneous solutions
for short times. Ukai [37, 38| gave in the 1970’s a new impulse to the Cauchy problem and
established, in the case of hard potentials v € [0, 1], the existence of global solutions in
LPHE ((v)kp~" dv), first in the periodic box T? in 1974 [37], then in the whole space R?
in 1976 [38], by relying on spectral studies of the linearized equation [37, 20, 40] (let us
mention also [32]). The case of soft potentials was then treated in 1980 by Caflisch [11],
then in 1982 by Asano and Ukai [40] only for v € (—1,0), but this approach was recently
extended to the full range v € (—3,0) by Sun and Wu [42] in 2021 and then Deng [16]
in 2022. These results were then proven using energy methods in spaces of the form
L2H3 (' dvdz) by Kawashima [29], Liu, Yang and Yu [30], Guo [26] and Guo and
Strain [35, 36], as well as Duan [17].

Concerning the non-cutoff case, the first existence result near equilibrium attributed to
Ukai [39] ; he constructed local solutions for analytic initial data in (x,v) having Gaussian
decay using the Cauchy-Kowalewski theorem. Between 2011 and 2012, Gressman and Strain
[24, 23] (in the torus), and Alexandre, Morimoto, Ukai, Xu, Yang [6, 4, 7] (in the whole
space) constructed the first global solutions in spaces of the form Hj , (<v>k/f1 dx dv)
by working with anisotropic norms. In the whole space framework, Strain [34] obtained
the optimal time-decay for solutions in the whole space. Later Sohinger and Strain [33]
extended these results to some Besov spaces in 2014, and Fang and Wang [41] relaxed some
technical regularity and integrability assumptions in 2022. Recently, in the case of the torus,
Duan, Liu, Sakamoto and Strain [18] obtained the existence of small-amplitude solutions,
that is, in the space L%L,?OL% (u~'da dv) where ¢ denotes the Fourier variable in space.
Let us also mention two very recent works in the case of the whole space: Deng [15], in the
case of hard potentials, who constructec global solutions by working with an anisotropic
norm defined from the pseudo-differential study of Alexandre, Hérau and Li [2]; and also
Duan, Sakamoto and Ueda [19] who constructed low regularity solutions (as in [18]) in the
case of hard and moderately soft potentials, obtaining also obtained the decay in time of
solutions.

All the above results concern solutions with Gaussian decay in velocity, that is, they
hold in functional spaces with a weight in velocity of the form p~'dv. In 2017, Gualdani,
Mischler and Mouhot [25], in the line of [31], constructed solutions with polynomial decay
in velocity. More precisely they relaxed the integrability conditions of previous results and
constructed solutions in WP ((v)k dv da:), in the case of hard spheres in the torus T3.
In the same framework, the case of non-cutoff hard potentials was treated in [28, 9], and
that of non-cutoff soft potentials in [13]. Very recently, still in the torus and also in spaces
with polynomial weights, the case of cutoff soft potentials was studied by Cao [12].

Our result in Theorem 1.1 gives then, up to our knowledge, the first result of existence of
global solutions with polynomial decay in velocity to the non-cutoff Boltzmann equation in
the whole space. Moreover we also establish the convergece of solution to the Maxwellian.
Inspired by the strategy of [10], we shall construct a solution f to (1.6) by considering a
decomposition of the form f = h + g, where h(t) € X(m) has polynomial decay in velocity
and satisfies a “nice” semilinear equation in which only a dissipative part of the linearized
operator A is present, and ¢(t) has Gaussian decay in velocity and evolves according to
the Boltzmann equation plus some coupling term coming from h, with convenient decay
properties in time and velocity. This system will then be solved using an iterative scheme
and an energy method, where it its crucial to have better decay properties for A in order
to treat the coupling term in the equation for g. We will then combine the energy estimate
from the well-posedness theory with dispersive-type estimates for the equation associated
to g, similarly as in [19], in order to obtain the decay estimate. In Section 2 we prove the
necessary nonlinear homogeneous estimates on ), and in Section 3 we prove the necessary
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coercive-type estimate on the linear part of the equation for A and recall those related to
the equation for g. In Section 4 we prove nonlinear inhomogeneous estimates associated to
. We then proceed to prove our main result in Section 5.

1.2. Notations. The relation denoted A < B is to be understood as A < CB for some
uniform constant C' > 0, and A ~ B as both A< Band B S A

When considering a function f(v) depending on the velocity variable, we shall use the
standard shorthand notations

(1.15) f=fw), f=f0) fo=Fflv), fi=FR0),
where we recall that the pre- and post-collision velocities (v',v}) and (v, vs) are defined
n (1.3).

2. ESTIMATES ON THE COLLISION OPERATOR

This section is devoted to spatially homogeneous estimates on the collision operator Q).
We present some auxiliary results in Section 2.1 which we will use to prove estimates on @
in polynomially weighted spaces in Section 2.2.

2.1. Auxiliary results. We state a few results that will be useful in the sequel. This first
lemma will be used to estimates integrals against the kinetic part |v — v,|? of the collision
kernel B(v — vy, 0).

Lemma 2.1. Let o € (0,3) and s € (0,1]. For any smooth enough function f = f(v) one
has:

(1) If0 < a <
(2.1) / o — vu| 7 f () [ dow S (0) ([ (0) f Iz

R3
(2) If0<a< % + s then for any £ > % + s there holds, for any v € R,
(2.2) / o — vu| 7 f () [ dow S (o) ([ (0) f | s

R3

Proof. From [14, Lemma 3.3] for instance one has, for any 0 < § < 3 and ¢ > 3,

(2.3) / , v — v, P (0) " du, < ()P, Yo e R
R

N

then for any £ > % there holds, for any v € R3,

We now write for p € [1, 00|, thanks to Holder’s inequality,

p—1

—a—-P— P p
[ =l @lde, < ([ o= o ) o) 100 .
R3 R3
We then conclude by using (2.3) with: p=2if0<a<3;andp=35-if0<a<3+s
by using the Sobolev embedding H*(R3) — Lﬁ(R‘g). O

Lemma 2.2. Let ¢ = p(v) be a Schwartz function and o € (0,3). For any n € (0,1) and
¢ > 0 there is C > 0 such that there holds, for any v € R3,

[ o= vl (e du, < )=+ Co)
Proof. Let v € R? be fixed. We split the integral for some M > 1
[ o= el lp()] v,
R3

</ v — 0.~ p(v.)| dv, + 0= 0]~ v)] dvs

|lv—vs| =M |[v—vs| <M

For I we write (vy) ™% < (v — v,)%(v)~* for some arbitrary ¢ > 0, thus

I 5 (0) " [l{0) |20 / [0 = 0] "0 = ve)  dve S (v) 7

[v—vs | <M
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For I) we take p > 3/(3 — ), so that p/(p—1) < 3/, and apply Holder’s inequality to get

p=1 1
K(/ !v—v*r”‘p’ﬁw*r‘]f’%dv*) ,, (/ 1|v_v*\>M<v*>qp|sa<v*>rpdv*>p
R3 R3

1

p

ST N SR LN L

where ¢ > 0 is such that q 1 > 3. We now observe that for M > 2|v|, if |v —v.| > M
then |vi| = |v —vy| — |v| = M/2 and thus we get

Ly toontoar @ lp@P dve S [ Lo (o) Plo(e )P do
R3 R3

SM7 [ )R do,
R3
SMTP
We then conclude taking M > max(1,2|v|) large enough. O
Proposition 2.3. The following change of variables formulas hold:
(2.4) /b(cos 0)|v — vV f(v, 0, 0) do du,
—2—r

~ /b (cos(m — 20)) |v — vy sin (g - 9) f (v, v, ™ —20) do duy,

(2.5) /b(cos ) v — vy |7 f(V, vy, 0) do dv =~ /b(cos 20)|v — vi|7 f (v, v4,20) do du,

/B — Vs, 0) f (v, 04,0, 0}, 0) do dw, dv :/B(v—v*,a)f(v’,vfk,v,v*ﬁ) do dv, dv.

Proof. The pre-post collisional change of variables (2.6) is known to be involutive with
Jacobian 1 and it is easy to check that |[v — v.| = [v — v]|. We only deal with the first two
change of variables. Recall the definition of v’:

;U U\U—v*]
2 2
Denote k := |U O ol and recall that 6 is the angle (k,0). The differentials of v with
UV — Ux

respect to v and v, writes in the basis (k, o, w) where w L k, o (at least when k and o are
not colinear)

dv' 1 (00
(2.7) =—(Id+(-,k)o) == 1 1+4cost 0],
dv 2 2
o 0 1
10 0
dv' 1 1
(2.8) LS (d—(-, ko)== [1 1—cosf 0
do, 2 2 0 0 1

Thus, the following identities hold:

1 1
(;111; 8(1 +cosf) = 1 cos? <§> )
do’ 1 1 . 2(0)
Qo —g(l—COSH) 157 (5 )

Furthermore, the definition of v’ also implies
1 0\?
[v — v, |* = 5 cos <2> v — v,]?,

1 A%
v —v* = §sin <2> v — v, ]2
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The angle ¢ formed by v — v, and o and the angle v formed by v' — v and o are related
to 6 by

0 m—0

53 T/J - 9 )

thus the integrals are estimated as follows:

(p:

/b(cos 0)|v — vV f(v, 0, 0) do du,

R~ /b (cos(m — 24))) |[v — v|" sin (g — w) o f (v, v, ™ — 2¢0) do dv/,

/b(cos 0) v — vi|T f(V, 04, 0) do dv =~ /b(cos 20)|v — v f (V' 04, 2¢) dodv'.

We conclude to (2.5) and (2.4) by renaming the integration variables. O

FIGURE 1. The changes of variables (v,v") — (v,v,) and (v, v4) = (v, v4).

We state the so-called Cancellation lemma from [1, Lemma 1].

Proposition 2.4 (Cancellation lemma). The following cancellation formula holds:

[ Bl = vt = £ dvedos = (£ )0,
where the function S = S(z) is defined as

/2 ) 1 ’Z‘
S(z) := 271'/0 sin 0 (cos?’@B (COS(9/2),COSG> - B(\z|,cos€)) dé.

In the particular case of the collision kernel Bs(v — vi,0) = B(v — v«,0)1jg/<s, the corre-
sponding function S5 satisfies

Ss(z) ~ 6272 |2|.
The following lemma is from [3, Lemma 2.3].
Lemma 2.5. Let m = (v)* with k > 0, then there holds
(2.9) m(v) < m(v') +m(v)),
(2.10) m(v) — m(©")] S Om() o) + 6 miul),

where the pre- and post-collisional velocities (v',v,) and (v,vs) are defined in (1.3).



8 K. CARRAPATOSO AND P. GERVAIS

This lemma will serve to remove the kinetic singularity |v — v,|” in some integrals
involving the collision kernel B(v — vy, o).

Lemma 2.6. For anya > —3, b€ R, ¢ >3+ 2s+a+b and any smooth enough function
f there holds

/b(cos 0)|v — v, (v — v,)’(v,) "Uf (v, 0") do duy dv
~ /b(cos 0) (v — v, (v,) " f (v,0") do dv, dv

v,.)?*? we resort to using

Proof. As we cannot simply control |v — v, |*(v — v,)? by (v
Carleman’s representation:

/b(cos 0)|v — v, % (v — v,)°(v,) "I f (v,0") do dv du,

|y’1+2s+a b
”/v,heRB’ W@) (v+y)"Uf(v,v + h) dy dh dv,
yLh, |y[>|h|

f(v,v+h)
— [ Kang(v.1) e dhde,

where we denoted the singular y-integral, which is well-defined because 14+2s+a+b—q < —2
and 1 +2s+a > —2

Ksing(v7h) = [, in |y|1+2s+a<y>b<v + )79 dy
ly|=|h|
and aim to prove
Kiing (v, h) & Kreg(v, h) := /th, "2 () T (v + y) 9 dy.
ly[>[h]

To do so, we split Kging for |y| < e and |y| > € where € > 0 will be chosen later:

Ksing(v’ h) = oL |y‘1+25+a<y>b<v + ) dy
e=ly|=|h|

+/ o TP o+ y) T dy.
lylzmax{jnlc}

Concerning the first part, if € is small enough, the assumption |y| < € implies (v + y) ¢ ~
(v)~9 uniformly in y. Concerning the second part, the assumption |y| > ¢ implies (y) ~ |y|
uniformly in y. Thus we have

Kang(v,h) = [ 1 W@ 0+ ) %y + [, ) o+ y) 0 dy

ez|y|>|h| |ly|>max{|h|.e}
%<v>’q/ b, Iyl”25+“<y>bdy+/ oin W@ 0+ y) T dy
e>lyl>h| lylzmax{jhl.c}

)+ [ W) ey dy
jyl>max{jhle)

With the same reasoning, we have

Kreg(v,h) = [ 1 W) o) 0dy+ [, ol ) v+ ) dy
e2ly[>[h| ly|>max{|h|,e}
— b b —
S [y IR [ ) e )
e2y|=|h| ly|>max{|h|.e}

~) U [ ) o+ )T dy
ly|>max{|h|,e}
We conclude that Kging = Kreg, which concludes this step. ]
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Lemma 2.7. For any v € (—00,2] and s € (0,1), the anisotropic norm defined as
17 By = 100072 3y + [ Ble030) o) )(F = F)?dor o,
where we denoted F = m(v)7/2f, is equivalent to the following norms involving a weight
function ¢ € L ({(v)) N Llog L:
(1) 110)2 F1l72 (my + /b(COSG)go*(}"’ — F)?do du, dv, if also ¢ € LL (1)),
(2) |\<v)7/2f||%%(m) + /b(cos 0) . (v)7(F' — F)?do dv, dv, if also ¢ € L} ((v)*),
(3) H(v)V/ZfHQLg(m)-i-/ b(cos 0) (v—v,) . (F'—F)? do dv, dv, if also p € L} (<U)4_7+|7|>,

where we denoted F' = mf. Furthermore, the anisotropic norm can be compared to isotropic
Sobolev norms as follows:

(2.11) 1) F gy S 1Dy S H0Y2 2 £

and we have the general bound
212) [ beosO)w) e (F ~ P2 dodvedo S I0) el 113

Proof. We first establish the comparison (2.11) followed by the equivalence || f||? o () (1),
then proceed to show (1) ~ (2) and (2) ~ (3).
Step 1: Proof of (2.11) and || f||? 5 (my & (1). From the proof of [6, Lemma 2.7, estimate

of AJ, for some constant ¢, > 0 depending on [|¢)||L1og and [[9][11 (), We have

11
(3

(2.13) 112, + /b(cos 0) 6 (F — F)2do dv. dv > cyl| Fl%:,
and from the proof of [6, Lemma 2.8], we also have
/ b(cos 0) (u(v) ™), (F' — F)2 do dv. dv S [ (0)2 F%s.

The comparison (2.11) follows from these two bounds with ¢ = p(v)~7. Furthermore, it
was established in the proof of [28, Lemma 2.3-(4i), estimate of I?,] that

——
b(cos ). (F' — F)*do dv, dv = | £ 1% s,
/ TGy 7 Vo
(214) - O(Hso||w>zs>uﬂ|%15).

Thus, interpolating this estimate with (2.13) with ¢» = ¢ as to absorb the O term, we
deduce ||fHH5 )y (1).

Step 2: Proof of (1) ~ (2) and (2.12). On the one hand, we have
/ b(cos ) (V) (F' — F)2 do dv, do

thus, using Young’s inequality, we have
1 2
3 /b(cos 0)p.(F' — F)? do dv, dv — /b(cos ). (F')? ((v’)“Y/2 - <v>7/2) do dv, dv
< / b(cos ), (v) (F' — F)?do dv, dv

2
<2 / b(cos 0)p.(F' — F)*do dv, dv + 2 / b(cos 0)p. (F')? (<U/>v/2 - (v)7/2> do dv, do.
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Next, the inequality [28, (2.7)] valid for any o < 1:
[{0)® = ()7 S sin (§) (V) (0:)* 7%,
used with a = /2 < 1 allows to tame the angular singularity, making it integrable:
/b(cos ), (F')? (<’L),>’Y/2 - <U>’Y/2)2 do dv, dv

/b (cos 6) sin ( ( (v)4_7)* (F)?do dv, dv

S [ (plo)*), P2 dv. dv = [10)* el 1y | 711,

where we used (2.5) and then integrated in o in the second inequality. In conclusion, we
have shown

/b(cos ). (V) (F' — F)?do dv, dv = /b(cos 0) . (F' — F)?do dv, dv
(2.15) +0 (Ile* Ny |1 F 13 )

from which (1) ~ (2) follows. Combining (2.15) with (2.14), and observing that 2s < 4 —,
we obtain

[ bleos o) (7 — P do dvedv = gy 17 By + O (100l 171)
from which we deduce (2.12) thanks to (2.11).
Step 3: Proof of (2) ~ (3). The equivalence is immediate thanks to the previous steps and
() M) < (v = 0.)7 < (o) (0)7,
as it leads to the comparison
/ bcos 6) (p(0) 1) (o) (F' — F)? do du, dv

< /b(cos 0) . (v — v,)Y(F' — F)*do dv, dv

< /b(cos&) (go(v)Wl) (V)Y (F' — F)*do dv, dv.

*

This concludes the proof. ]

We have seen in Lemma 2.7 that only the strength of the angular singularity and the
growth of the weight in v (i.e. (v)Y or (v — v4)?) up to the change of weight F <> F' are
the defining features of the norm || - [| ;ys.«. One could combine this result with Lemma 2.6
to show yet another equivalence:

1By = W2y + [ B0 = 0 0)pu(F = )2 oo,
which is the definition chosen in the series [6, 4, 5, 7, 8, 3].

2.2. Homogeneous estimates in polynomially weighted spaces. The goal of this
section is to establish nonlinear estimates for the collision operator () in spaces with
polynomial weights, which we state below.

Proposition 2.8. Assume k > 9/2 — |y|/2 + 2s and consider m = (v)¥. For any
0> 13/2 4 2|y| and smooth enough functions f,g,h there holds

QU2 9). W) 12
(2.16) N (H<v>7/2fHL%(m)HQHHﬁ’*(@)f) + HfHHi’*(@)‘f)||9||H3’*(m)) H(v>’7/2h”L%(m)
1z 1) 9l e gy 1Bl 13+ )
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Moreover there holds
(Q9, £)s )Lz m)
(2.17) S Mgl 2 oy 1 e oy + N9l a2~ oy 160) 2 £ 2 ) 1 D e o
+ H<U>W/29”L%(m)”f”Hﬁ’*((v)e)H<’U>W/2fHL%(m)-

These estimates will be proved by combining commutator estimates (Lemma 2.10)
with He’s estimates in L2 (Lemma 2.9, for (2.16)) or new anisotropic estimates in L?(m)
(for (2.17)). Let us start by recalling the estimate established in He [27].

Lemma 2.9 ([27, Theorem 1.1]). Assume —1 < v+ 2s < 0. For any wi,w; > 0 such that
wi +wy =v+2s and a,b € [0,2s] such that a+b = 2s, any by > 3/2+ |y+2s|, there holds

(Qf,9): Mz S 1 fll p2 (o) 191 e oy 1R o oyws)-
Let us now state and prove the commutator estimates required to prove Proposition 2.8.

Lemma 2.10. Suppose k > 9/2 — |y|/2 + 2s and consider m = (v)¥. For any smooth
enough functions f,g,h and any € > 13/2 + 2|v| there holds

|<Q(f7 g)) h>L%(m) - <Q(f7 mg)7 mh)L%|
S )2 L2y (HgHHi’*(m)Hf”Hf,’*((v)‘f) + gl g5 oy 1€0) 72 £l 22
gl oy 220 ) -

Proof. We shall adapt the proof of [9, Proposition 3.1] where the hard potentials case
v € [0, 1] was considered. We start back from their decomposition:

6
(Q(f7g)7h>L%(m) - <Q(f7 mg)¢mh>L12, = /B(U - U*,O') ig/H(m - m/) do dv, dv = era
j=1

where the terms I'; are defined in the proof of [9, Proposition 3.1] and, under the assumption
k> 9/2—|v|/2 + 2s, were shown to satisfy

r = k:/b(cos 0) v — v |V (V)2 v — v, | (Vs - w) cost T (g) sin (g) fxg (mh) do dv, dv,

where

Ty <1 (g: (mf)?)"* % I (g (mh)?),
Py < 1 (e (01 1)°) " < 1 (1w)gs (miy?) 2,
Ty <I )

)"

where we have denoted for compactness
I(p; D) := / [v — .| T ® dv du,.

First, in virtue of (2.2), we have for ¢y > 4 + 3/2 + s the following estimate:

6
S T3 S 1Yl 12 my (1 rg(qayoy 10) 7201 22y + 190y 1 007 FlL 2o ) -
§=2
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It remains to estimate the term I'y. Still following the proof of [9, Proposition 3.1]), we
v

denote w = ﬁ, so that @ is orthogonal to v" — v, and thus we split 't =T ; +T'12
with
1=k / b(cos 6) cos® (%) sin (g) v — v, 7T W) 2 (v, - ) frg (mh) do du, do,
and
o= k/b(cos 0) cos™ ! (g) sin? (g) v — v T Y2 (v, - @) frg (mh) do du, do.
For the term I'y » we can then argue as for the terms (Fj)ngg(j and we obtain
T12 ST ((0)2F; () 19)?) x I ((v)2f; (mh)?)
S 1) 2Rl 2 () 1 Wz w0 14029 2 -

Moreover the term I'y 1 is shown to satisfy, denoting G := (v)¥~2g,

RS /b(cos 0)sin (2) [v — v (v.)2| £/ — G'||mH| do dv, dv.

Using Hoélder’s inequality for some n > 0 to choose later,

' S /b1/2(cos 0)|v— v*|7/2 sin (%) (mh)’ (<v>2f)i/2
1/2

x b4 (cos 0) (v — v)4(0) 12 |G = G2 ().

x b4 (cos B) |0 — w772 (v — 0.) V)2 |G — G (v,) T do do, du
1/2
< (/ b(cos ) |v — v,|7 sin® (§) [(mh)’}2 ((v)?f), dodo, dv)

1/4

X (/ b(cos 0) (v — v,) 7 (v)? (G — Q')Q (<v>2+"f)i do du, dv)

1/4
X (/ b(cos 0)|v — v (v — v,) 7 (v)? (G- g’)2 (v,) "2 do do, dv) .

The change of variable (2.5) followed by (2.2) in the first integral with ¢; > 2 +3/2 + s
gives

T1t S IS ey 10V 7R 22

1/4
X (/ b(cos 0) (v — v,)7(v)? (G- Q')2 (<v>2+"f)i do do, dv)
1/4

X (/ b(cos )|v — v (v — v,) 77 (v)? (G- g’)2 (v,) 72" do dw, dv)

Next, using Lemma 2.6 in the third integral, taking 2n > 1 + 2s + v (note that 2y > —3),
we have

T1t S ooy 10V 2R 22
1/4

X </ b(cos ) (v — v,)7(v)? (G- g’)2 (<v>2+"f)i do do, dv)
1/4
x (/ b(cos0) (v — v.) ()2 (G — G) (v,) 2" dor du, dv) .
The inequality (v) < (v — v4)(vs) and the fact that v < 0 then imply

Tia S Iy 1) 2R 22
1/4

X (/ b(cos ) (v)*T7 (G — g’)Q (<v>2+”*”’/2f)i do du, dv>
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1/4
X (/ b(cos 0) (v)*T7 (G — g’)Q (v,) 727 do du, dv) :
As 24+ v < 2, we may use (2.12) to bound these two integrals:
1/2 - n— 2,1/4 —o(n— 4
Tt S I ey 10 2Rl 22l 2o oy 1002 (00 2Fm 2272 ) |40 () 20200

<||f||1/2 oy 1O 2Rl 2 9 ey 1 02 FII

where we considered n > 7/2 4 || and ¢ = 3+ n + |y| > 13/2 4 2]v|. Note that since
13/2 42|y = 11/2 — y/2 + s + (—y — 22 4+ 1) and v + 2s < 0, we have €y > £o + |7]/2.
We conclude the proof by gathering previous estimates, using (2.11), and taking ¢ =
max(€0+|’y]/2,€1,ﬁg) 252. O

We can now prove the main estimates of this subsection, that is to say those of Proposi-
tion 2.8.

Proof of Proposition 2.8. In this proof, we denote F' := mf, G := mg and H := mh.

Step 1: Proof of (2.16). The first estimate (2.16) is a combination of Lemmas 2.9 and 2.10.
We first observe that Lemma 2.9 with wy = k+7/2+2s, wa =k+v/2anda=b=s
yields, for €y > 3/2 + |y + 2s|,

(QUf,G), H)2 Hf”L%((qy)eD)H<U>7/2+289||H3(m)”<U>7/2h”H§(m)

S 1122y 20) 1402 9l 1157 oy Wl 113 oy

where we used (2.11) in the last line. We then deduce (2.16) by putting this estimate
together with Lemma 2.10 for £ > 13/2 + 2|y| > 4.

Step 2: Reductions for the proof of (2.17). First, we decompose the trilinear form using a
commutator:

<Q(g7f)7f>L%(m) = <Q(gaF)7F>L% +I37
where we denoted
I3 = <Q(g’ f))f)L%(m) - <Q(97F)’F>L% .

Second, we decompose the remaining term as
Q9. F) F) s / B(v—v,,0)(¢.F' — g.F)F do dvdu,
= /B(v —,,0)(20.F'F — g, F? — g.(F")?) do dv dv,

2/B — vy, 0)g.((F")? = F?) do dv do,.

Using the change of variables (2.6) in the first term of the first integral and the cancellation
lemma 2.4 in the second integral, we obtain for some ¢ > 0

(Q(9, ), F) 2 (m) = /B v — Uy, 0)gx(F' — F)*do dvdo, — c/ v — v,V g F? do do,
=:I; + I,

To sum up, we have the decomposition

<Q(g7 f)7 f)L%(m) = Il + I2 + :[3'
The term I satisfies by Lemma 2.1, for any ¢y > 3/2 + s,

Lo S 19l s (quyor [10) 72 £l 72y,
and the term I3 satisfies by Lemma 2.10, for any ¢ > 13/2 + 2|/,

I < [(0)2 £l L2 () <||f”H;j’*(m)”gHHS’*((U)Z) N s oy 10) 29| 12 my

+ 1z ey gl 20y )

so that, since £ > ¢y + |v|/2, the sum I + I3 satisfies the same estimate as I.
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Let us turn to I;. Using the Cauchy-Schwarz inequality with some positive ¢ > 0 to be
chosen later, we have

I :/b(cos 0)|v — v.[7gu(F' — F)? do dv du,
1/2
< (/ b(cos 0)|v — v. |V (v — v,) V() "UF' — F)*do dv dv*>

(/b cos ) (v — v,)7 (( Va/2g ) (F'—F)Qdadvdv*>1/2.

Assuming ¢ > 3+~+2s, we remove the singularity in the integral prefactor using Lemma 2.6,
and then use the inequality (v — v4)? < (v)?(v,)~7 in both integrals:

L </ b(cos 0)(v — v:) " (v2)"U(F' — F)* do dv dv*) "
X </ b(cos 0)(v — v,)" (<v>q/2g)i (F' — F)? do dv dv*)1/2
S </ b(cos 0) (v.) =" (v) (F' — F)? do dv dv*)l/Q

1/2
</b cos 6) ((v)9/27/? ) (W)Y(F' — F)2dadvdv*) .
Using (2.12) and imposing ¢ > 7 — 27 so that (v)4~9727 is integrable, we then obtain

- 2,1/2
TS 12 (o 1 0)* Y (0)%29) " 11
<115 oy 10 22,
where (1 = 2 — v/2 + q/2 satisfies £1 > 11/2 + 2|y| and ¢; > 7/2 + 3|v|/2 + s. The
estimate (2.17) is then proved by putting together previous estimates and observing that
max (¢, 01) = £. O
3. LINEAR THEORY

3.1. Estimates on .Z. The goal of this subsection is to prove the following proposition.

Proposition 3.1. Let k > 7/2 — |y|/2 + 25 and denote the weight function m = (v)*. For
any smooth enough function f there holds

(3.1) J(28)m? dodo < —ellF13 ey + €I 3,

for some positive constants ¢, C > 0.

We introduce a splitting of the angular cross section b(cosf) so as to decompose the
linearized operator .Z as a singular regularizing part and a weakly coercive non-singular
part, namely we define for any ¢ € (0, 1]

b(cos 0) = b(cos 0)1g/<s5r/2 + b(cos 0) 119567 /2 =: bs(cos ) + b§(cos 0),
which induces the following splitting of the linearized operator:
L =L+ %5

Denote vs the approximate collision frequency defined as
vs(v) = / [0 — 0, [1b (cos B)p(v) dor du,
R3xS2

which satisfies, according to the cutoff case (see for instance [21]), for some positive
constants vg,v1 > 0

(3.2) vod 25 (0)7 < ws(v) < 116”2 (w)7, Yu e RS,
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The cutoff part of the linearized collision operator then splits
(3.3)

Lf=—vaf + | o= v b(eos0) [Fn() = F0)a(w) + (e f@')] dodu.

Lemma 3.2 (Non-grazing collisions). Suppose k > 3/2 + |v|/2 + s and let m = (v)*. For
any 9, € (0,1] there holds

[ (g gm® dv < —e 0290y + <) 201 + Co gl
for some positive constants c¢,Cs. > 0.

Proof. Firstly we consider
/(.,%Cg) gm*dv = — Hz/;/QgH%%(m) + / [v — v.| 76§ (cos ) gl i gm? do dw, dv
- / [v — v, |75 (cos 0) guprgm? do dv,, dv

+ / |v — v, [Yb5(cos ) il g’ gm? do dw,, do,
so that, using the bounds (3.2) on vs, we have
[ (Z59) gm? dv + 062 (0 2gl3ay ST+ T + T
with, denoting G = mg,
I, = / |v — v, 76§ (cos 8) gl ' Gm do dv, dv,

I, = / |v — vy |7b§ (cos 0) gxuGm do dv, do,

I3 := / |v — v, |70 (cos O) ul.g' Gm do du, do.
In Step 1, we prove that the terms I; and I3 satisfy the bound
(3.4) I + I3 <5 170/22s / v — v,|? G? @, dv do,,

where ¢ denotes a Schwartz function (typically of the form u®(v)?) from which we will
deduce using Lemma 2.2 with 1 = 6'77/2 that there holds

(3.5) L + T3 < 202 (0) /2] 2 () + Cesllgl 2.
In Step 2, we will prove that I satisfies
Iy < &0 2 [(0) gl s my + Cesllgll72,
so that taking € small enough, we obtain
L+ 12+ 13 < %5_2S||<U>7/29H%%(m) + 5/||<U>7/29H12L15(m) + Cé,s”ﬂ”%%v
where ¢’ is arbitrarily small. This will indeed prove the lemma by taking ¢’ small enough.

Step 2: Proof of (3.4) for I} and Is. We start by splitting I using (2.9):
I :/ |v — v, |05 (cos 0) gl ' mG do dv, dv

5/ | — v, |[70$ (cos 0) ((v)g) (um)' G do dv, dv

+ / |v — v, |65 (cos 0) Gl i’ G do dv, dv =: I11 + o,

Rewriting I;; thanks to (2.6), using the Cauchy-Schwarz inequality, then integrating in o
one obtains

I :/ |v — v, 76§ (cos 0) ({(v)g), (um)G" do dv, dv
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1/2
< (/ v — 0. 6§ (cos 0) ((v)g)? (wm) do dw, dv)

1/2
X (/ |v — v, 705 (cos ) (um) (G)? do du, dv) :

Using the change of variables (2.4) in the post-factor, then integrating in o we get

1 5 ([ scosle —val (2002 ) o )
X (/ b5 (cos(m — 20))|v — v.|Y (7 — 20) 277 (um) G2 du, dv)l/Q

< g/ / v — v |7 (pm) G2 do, dv.
To bound the part I 2, we start again with the Cauchy-Schwarz inequality:

Iip = / |v — v, |05 (cos 0) Gy’ G do dvy dv
1/2
< (/ |v — v, |75 (cos 0) (G2 ) 1! do du, dv)

1/2
X (/ |v — v, [ 70§ (cos 0) ' G2 do du dv) .

Up to the pre-post change of variables (2.6) in the prefactor, this term is dealt with in the
same way as I11. Similar computations (using (2.5) this time) lead to

I3 <62 / |v — v |7 (m) G2 dv, dv.

This concludes this step.

Step 2: Proof of (3.5) for I. For Iy, we integrate in o to get the factor 6=2%, then in v,
using the estimate (2.1) with the power § = k + /2 > 3/2 + s, which yields

I, = /bf;(cos 0)|v — vi|7 g puG dvy dv

S ) gl [ (o) 1G dv
< 0202 gl s my + Ce s gl Lz
where the last line comes from Young’s inequality. O

Lemma 3.3 (Grazing collisions). Let k > 13/2 + 2|y| and define m = (v)*. There exists
some ¢ > 0 such that for any e >0 and 6 > 0

(3.6) (Lo fo ) r2m) < Ellfl3rss + Cel )2 1172 0m);
(3.7) (ZF D ramy < =ell e omy + CIO 7 T2 (m)-
for some C. > 0.

Proof. We start by splitting the Dirichlet form using commutators:

(L5, Frzam) = Qs )y Flrzm) + (Qs(f, 1)s £)r2(m)
=(Qs(u, F), F)r2 + R + Ro + R,

where we denoted

Rl = <Q5(f7m,u)7F>L%7
Ry == (Qs(11, ), [ r2(m) — (Qs(1t, F), F) 2,
R3 :=(Qs(f, 1), fr2(m) — (Qs(f,mp), F) 2.
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The first term is estimated using Lemma 2.9 (where we choose w; = v/2 + 2s, wy = v/2
for the weights, a = 2s and b = 0 for the derivatives):

Ry S 10)2F 2 .

and the two other ones using Lemma 2.10 and Young’s inequality:
Ry + Ry < C (I100)2 73 my + 10)2 Lz 1 iz om)
< Cell 0 1 my + <l s oy
We then focus on the first term which provides the anisotropic dissipation H3*(m):
Qs F /35 00, 0) (L F' — ji,F)F do do, dv

/B5 —0y,0)(2uLF'F — p F? — 1/ F?) do dv, dv

+ = /35 — vy, 0) (i, — ) F2 do du, do.

We use (2.6) to change the term p/, F'? of the first integral into p.(F”)?, and the cancellation
lemma (Proposition 2.4) in the second integral:

(Qs(u, F), F = —*/Bg — vy, o) (F' — F)?do dou, dv
+ C'(s/ v — v | e 2 doy du,
where Cs5 < 1. We thus have in virtue of (2.1)
(@s(1s F), F) ) + 5 [ Bo(o = 00, Wi (B = F)? dor v dv S 1072
Next, using (2.6), and then |v — v.| < (v)(v4) combined with the fact that v < 0, we have

/35 — vy, 0) e (F' — F)?*do dv, dv
=— /b(;(cos 0)|v — vs|" s (F' — F)* do dw, dv

— /bg(cos 0)(v)” (u(v)‘”)* (F' — F)2 do dv, dw.
One shows as in the proof of (1) ~ (2) from Lemma 2.7 that
— [ Bao = vn (B = P dodu, do+ 5 [ bs(cos0) (u(w)?), (F' = F)* do dv. do
<O 1 0m
Together with the previous estimates, we conclude that
(L1, ) < / bs(cosB) (u(v)?), (F' — F)*do dv, dv
~wwmmm+wwwvﬁmy

The second term being non-positive, we conclude that (3.6) holds.
Furthermore, this proof works when replacing bs by b (which corresponds, in a way, to
taking § large), thus for .£ we get

L, P rz2m) < b(cosB) ( F' — F)?do dv, dv
2( %
+ é?Hf\IHmm) + CaH(U)”/QfII%g(m

Recalling the definition of the norm H2*(m) in (1.9), we therefore deduce that (3.7) also
holds by taking € small enough. g

We are now able to complete the proof of Proposition 3.1.
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Proof of Proposition 3.1. We get from Lemmas 3.2 and (3.6) that for § small enough
(Zf D) = (L5 Dz + (L f P ram)

< ellf Iy gy + Cell0) 2 Flpamy = 8 1(0) 2 T2 my + CIIf 172

< el A1y = 102 F 2y + CU 2o
We interpolate this estimate with (3.7): for any 6 € [0, 1]

(L1, F)1amy < 102 = (1= 0)e] £
+ [0+ (1= O)CT[(0) fll L3y + OC| f172-

We deduce (3.1) by taking 6 close enough to 1, € small enough, and integrating in space. O

3.2. Estimates on .2 — v -V, in exponentially weighted spaces. We present here
dissipativity estimates for the full linearized operator A = . —v-V,, in the space L? (u‘l/ 2)

and its weighted counterpart L2 (<v>q w 2). These estimates were initially proved in the
works [34, 7], but we formulate them in a manner compatible with our approach.

As in [34] let us introduce the following bilinear symmetric form using the notations
introduced in (1.7):

~

Wf,g)(€) = — o[ F(O)] - T[F-©)] + — 1 _cofg(e)] - TIF ()]

tIe T+ P
* iy g€ @D {@@L(«sn G) Id}
T 1 _7|_72|1£’2(€ ® u[g(f Sym : {@ fJ‘ Id}
+ 1+|§’2§P[f(§)] u[g(&)] + 1+|§’2§ plg(¢)] - [f(g)]

with 0 < 3 € 2 < m1 < 1, for any € € R3, where Id is the 3 x 3 identity matrix and
Tl = [ ol -5)fde. elfl= [ (wev-1)fav
R3 R3
and where for vectors a,b € R3 and matrices 4, B € R?**3, we denoted
1 3
(a®b)™™ = 5 (ajbe +arbj)icjecs,  A:B= ';1 AjiBjk-
k=

We use ¥ to define the following inner product (-, ) 2((ye,-1/2) (With respect to the

variable v) for some small enough s > 0 for any functions f = f(z,v) and g = g(x,v), and
any ¢ € R? as

(F© T L2 (toyaprr2) =(F(E), G 2 (um1/2) + Re T[£,9)(E)
(38) + K11 (JH(€). 5 () 13 (a2
+ “1\£I>1<f(§)7§(§)>L5(<v>qu—1/2)'
The next lemma states dissipativity estimates for this inner product.

Lemma 3.4. Let g > 0 be fized. Denote by || - ]HLQ( au=1/2) the norm associated with the
inner product -, -))L2(<v> au1/2)- The following holds for some constants Cy > 0 and Ag > 0.

1) The norm ||| - || ;2 _1/2\ 18 equivalent to the natural one, and more precisely in
L2 ((v)ap—1/2)

Fourier variables, there holds uniformly in & € R3

1~ ~ ~
a"f@)”i%(@)qu—l/z) < |||f(£)|||i%(<v>qu—1/2) < C‘ZHf(f)Hig((U)qulﬂ)'
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(2) The full linearized operator in Fourier variables satisfies the dissipativity estimate
Re((£ = iv - ©)F(€), FO) 1 ((uyo-v2) < ~MallF O pse ((yayi-1r2)
where we defined the (§-dependent) norm Hj™** (<v>qu_1/2> as

R R 2
(39 IFON e oy = IF- O iy + 1f‘,£‘2n T2 12

Proof. The norm it induces is equivalent to the natural one of L? ((v)q,u_l/ 2) since

Trey 2
’\Il[fv f](g)‘ 5 anf(g)HL%((wqufl/?)’
uniformly in ¢ € R3, where we recall that 7, is assumed to be small, and also because
I 22 12y Z 17 ()l L2 (pu12) = I (€ O L2 ((yau-172)-

The dissipativity comes from estimates established in [34, Section 2.2], which we recall
below in a crude but sufficient form; the hypocoercive estimate [34, (2.20)] for some « > 0:

~

Y €R® Re((L ~iv-€)F(€).F(6)) 1a(-vz) + Re ¥ [(£ —iv-€) f(9). J()] (©)

MOl 212y ~ O IO

as well as the weighted degenerate estimates [34, (2.9)] and [34, (2.12)] (with g = 0)
L TLey 2
vig <1, Re({(£-iv-9f©} . F4©) () OO e (o)
< CIFH O s (o2 + CLEPITFONT3 (112,

o~ ~

V€ € Rg) Re<(§f — v - f) (5)7 (§)>L%((U)‘1u*1/2) + allfl(f)HQ 5’*(<v>‘1u*1/2)
< CHf(f)”?{sa*(u—l/z)~

It is clear that for x small enough, the dissipativity estimate for (-, -) L2((v)ap—1/2) holds:

~ ~

Re(( — iv- €)7(€), FON 3 qyu-sr2) < Ml FOL o (gap 1)
This concludes the proof. O

We now introduce the exponentially weighted Sobolev spaces E; and Eg, with ¢ > 0, as
the spaces associated to the norms

(3.10) Hf”%aq = H<”>qu%ng(“—1/2) + H(v>qVifH%%L%(H_1/2)
and, respectively,
(311 A, = IVamf e pagrsey + 1) B, + 1)V e s,

where the anisotropic space EJ is defined by (see [7], or the equivalent norm of [23])
(312) Il 1= 1072 ey + [ o = v blcos O~ F)?do du, do,

where we denoted F := F(v) = p~/2(v) f(v) and F' = F(v'). Let us recall that this norm
can be compared to isotropic Sobolev norms [7, Proposition 2.2]:

1(0)72%2 Fll 2172y + 1602 Fll s 12y S 1 F g S 10)72F Fll s 72y

Using (3.8), we can define the new inner product (-, -)g,_on Eg by

(313) (90, = [+ EUTETO sa(paymrre)
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with associated norm || - [|g,. Observing that || - [|§. is equivalent to
q

(3.14) L AN () €€

where we recall that H5** is defined in (3.9), as a direct consequence of Lemma 3.4 we
obtain a dissipativity-type estimate for £ — v - V; in the space E:

Corollary 3.5. Let q¢ > 0 be fized. The norm || - ||, is equivalent to the natural one
| - [|g,» and the full linearized operator satisfies, for some A > 0 and any smooth enough
function f,

(L = v V) f g, < -

3.3. Estimates on B—v-V, in polynomially weighted spaces. We already know from
above subsection that in the gaussian spaces Eg, the full linearized operator A = £ —v-V,
dissipates the Ej-norm. Concerning the polynomial space X(m), we will rely on the
following splitting of the linearized collision operator .£:

£ =A+B,
A:=Myxgr, B:=2%-A,

with constants M, R > 0 and xg(v) = x(v/R), where x € C>°(R?) is a smooth function
satisfying 1j,j<; < X < 1jy|<2- The parameters M, R > 0 will be tuned later (to be chosen
large enough) in order to make B — v - V, dissipative.

Proposition 3.6. Assume k > 13/2 4 2|y| and define m = (v)*. There are My, Ry > 0
large enough such that for any M > My and R > Rg there holds, for any smooth enough
function f,

(B=v-Va)f, flrz (m) S *HfH%gHi’*(m)'
Proof. We write
(B=v-Va)f, Fliz ) =L = AL Pz ) = (0 Vaf iz om)-

The second term vanishes in virtue of its gradient structure (V. f) f = V. (|f|?), thus by
Proposition 3.1, we have for some constants ¢, C > 0

((B=v-Vo)f, iz m < —cl 72 iz my + CI 222 = MlIxr@)FIZ2L20m)

c c _
< §”fH%gHi**(m) - / (§<v>v —Cm™2 + MXR(U)) | f1?m? dv da,
by using that |||z g5+ m) = (v >7/2f||L%L%(m). For large values of |v|, we have that
£(v)7 = Cm~2 > 0 by the assumpmon k > |v|/2, thus there are My, Ry > 0 large enough
such that for all M > My and R > Ry we have
c

5(1})7 —Cm™2 + Mxpg(v) >0,

from which we deduce the desired estimate. O

As an immediate consequence of Proposition 3.6 and the fact that B commutes with V.,
we obtain the following dissipative estimate for B in spaces of the type X(m) and X*(m),
recalling the definition in (1.10) and (1.11), respectively:

Corollary 3.7. Assume k > 13/2 4 2|y| + 65 and define m = (v)*. There are My, Ry > 0
large enough such that for any M > My and R > Rg there holds, for any smooth enough
function f,

(B=v-Va)f, xm) S =I5 m)

We henceforth fix constants M > My and R > Ry in such a way that Proposition 3.6
and Corollary 3.7 hold.
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4. NONLINEAR ESTIMATES

This section is devoted to inhomogeneous nonlinear estimates for the collision onperator
@ that will be needed in the proof our main result in Section 5. These estimates are of two
different kinds: In Section 4.1 we focus on estimates in the Sobolev-type spaces; whereas
in Section 4.2 we treat estimates in Fourier-based spaces.

4.1. Nonlinear estimates in Sobolev-type spaces. We shall prove inhomogeneous
nonlinear estimates for the collision operator ) by using the homogeneous estimates proven
in Section 2.2. More precisely we shall prove bilinear estimates (Proposition 4.1) and
trilinear estimates (Proposition 4.2 and Proposition 4.6), for polynomially weighted spaces
X(m) as well as for exponentially weighted spaces E, (defined in (3.10)). It is worth
mentioning that, because of our strategy employed in Section 5, some of these estimates
are of mized type, that is, they involve one function in a polynomially weighted space X(m)
and another function in a exponentially weighted space E.

We start by proving the estimates we will use to prove the stability of the iterative
scheme from Section 5.

Proposition 4.1. Assume k > 13/2 + 2|y| + 6s and consider m = (v)*. For any
f,9 € X(m)NX*(m) there holds

(4.1) (Q(g, 1)s FYxm) S N5y 1911y + 115 11 1505 () 191155 o)
Supposing moreover that g € Eg N E(, then there holds

(4.2) (Qa, 1) F)x(m) S Iy | 91B0 + 1Ll oy 1 113 oy 9 1 -

Proof. Let us start by expanding the inner product defining the norm of X(m) in (1.10)
Qg 1)y Fxm) = (@9, £)s Frzrzm) + (VaQ(g, £): Vi) 1212 (m(w) 65

thus we get
(4.3) S QN Nrzram|+ X Y [(QO2P,02),021) 12 13 uy-21eie |
|a]=3 0< <

and we shall estimate each term separately.
We fix some ¢ > 13/2 + 2|v| such that k > £+ 6s, and observe that in particular we can
apply both estimates of Proposition 2.8 with the weight (v)*=%% in the sequel.

Step 1: General estimates of (4.3) in LP-norms. The first term in (4.3) is bounded by
integrating estimate (2.17) in space and using Hélder’s inequality LS — L2 — L2, which
yields:

<Q(gv f)a f>L%L%(m)
(4.4) S ”g”LgOL%(@)Z)Hf”%chg’*(m)
| + 1190 e 3 oy) 10V 2 Fll L2 3.6 1 | 22 123 )
+ H<’U>7/29HLng(m)HfHLgOH,f’*(@V)H<”>7/2fHLng(m)~

We bound the second term in (4.3) depending on the value of 5. When = «, we obtain
using (2.17) a similar estimate as before:

(Q(9,051), 0% ) 1212 (m(v)-6%)
(4.5) S ”g”LgOL%(@)f)HvifH%gHj**(m@)*GS)
‘ + HgHLgOHi’*((v)f)H<U>7/2v?:fHL%L%(m(v)—GS) V3 £ 11 12 112 (o) —59),

+ 110) 2 g/l 20 2 (mgwy-6) I VEF | 2 113 ey 1€0) V2 £l L2 12 (-0
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When g = 0, we use (2.16) that we integrate in space and using again Holder’s inequality
L% — L2 — L2, which gives

(Q(029, £), 07 ) 1212 (m(v)-6%)
S Y231 22 22 mwy =) L L e 5o oy 10) 2V £l 22 £2 ra gy ~0)
+ 1V2 9l 12 12 oy 1 L e 20 gy ~65) 1€0) P V3 £ 22 2 (=09
+IVogll L2 12wy ||f||LooH5*(m iy Vo F | 2 11 (g —65)-

(4.6)

When |3| = 1, we we integrate estimate (2.16) using Hélder’s inequality L2 — L2 — L2:
(Q(OS 9,05 1), 05 F) L2 L3 (miv)y o)
S 10)2V 201 L 22 mio)-59) | Vo Lz 112+ (i) 160D 2V £ L 22 12 gy o)
+ V29l e oy IV f a2 (o U>*65)||<U>v/2v§cf||L%L%(m(v>*65)
+ V29l za r2 (o)) 1 Ve Fl L2 iz ooy 1) Vo | L2 15 () —09)-

For |B| = 2 we integrate again (2.16) in space using Holder’s inequality L® — L2 — L2
which yields

(Q02Pg,00£), 05 F) L2102 ()02
S H<’U>’Y/2vngLg°L%(m<v>*6s)”V?cf”LgH,f’*((v)Z) ()23 1l 12 L2 (mw) -6)
+ Vgl oo 2 o)) | Vo £l 2 112 (g ~05) | €0) /2 V73 £ 1| L2 L2 (-9
+ 1VadllLeo 2 (0 HVZprHS “(m(oy=1) | Vo F Il L2 15 (o) —9)

(4.7)

(4.8)

Step 2: Sobolev embeddings for (4.1). We first observe that
£ llxm) = 1F 22 020m) + 1{0) Ve fllr222(m)
+ (0) V2 fll a2y + 1(0) " Vo fllL2.£2m)

and )
1 ey 2 W22 e oy + 1600 ™V fll 2 e )
+ 1) Ve iz ags omy + 160) " VaFll 2 13 m)

Moreover, since k > £ + 6s, we have
191l 222000y + V29l L2 (e + 129l w2 ey + Va9l 222 (0y0) < 191xm)

and

19l 2 13 )0y + V29l 1 =y + 1V 291 1z (yey + 1V29M 22 3 (o)) S 191l (m)
From (4.4), using the Sobolev embedding H2(R3) — L®(R?) we thus get

(Q(g: ) Nrzrzm) S I 15y lgllxmy + 1 1xcm) L1191+ (m)-
Arguing similarly from (4.5) we obtain
(Q(9:95 1), 05 N rz22m) S I 1%y l91x(my + 1f lxcmy 17|

For (4.6), we use again H2(R3) — L (R3) and

X+ (m) 1911 (m)

[ V2 g (mwy—as) S L Nl
to deduce
(Q829, 1), 05 ) r212(m) S I e (o 1911 oy + 1 1oy 1 1 () 19l ()
For |B| = 1, from (4.7) and the Sobolev embedding H}(R3) — Li(R?), we remark that
IVa Sl a2 s miwy-2s) S 1 f

X*(m)»

hence we get

(QO279,071), 0% F 1z r2(m) S I 15y 9l m) + 1L 3 m) 11+ oy 9

v

X * (m) .
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Finally, for the case |3 = 2, estimate (4.8) together with H2(R3) — L°(R?) yields

<Q(8§é—ﬁgvaﬁf)vagf>L%L%(m) S ||f”§(*(m)”g”X(m) + HfHX(m)HfHX*(m)Hg‘
This concludes the proof of (4.1).

X * (m) .

Step 2: Proof of estimate (4.2). We first remark that

HgHH%HS’*((v)Z) S H7Tg||Hng + ”gLHH%HS’*(('U)Z) S llglleo + ”9”1337
and that
1) 290l 1212y + 1029l 5212 (mwy-55) S 1191|Eo-
Moreover
1) 222y + 100) 72 V3 Il 2 22 gy -0+ S 0| f |y |11 m) -
Therefore from (4.4) we get

(Q(9, ), Flrzr2(m) < IIf]
and furthermore, for the case 5 = 0, we deduce from (4.5)
(Q(9,05 1), 05 ) 1212 (mwy-5+) S 1 k= (o N9l + 11 113 om) 1 1l 3 o) ] 9 -

For all the other cases || =1, |f| = 2 and § = «, we can argue as in Step 1 by observing
that

%= l9llEe + 1l 1 1l () 19 15

IVedll mzas o) + IV20m ms (oo + 11Vedll 2 ms (o) S llglles,
which thus implies from (4.6)—(4.7)—(4.8) that

(Q(ag_ﬁga 8§f)7agf>L%L%(m(v)*65) 5 Hf”%(*(m)”gHEo + HfHX(m)HfHX*(m)Hg’
This concludes the proof of (4.2). O

Ej-

We now prove the estimates which we will use to prove the convergence of the iterative
scheme in Section 5.

Proposition 4.2. Assume k > 13/2 + 5|y|/2 + 65 and consider m = (v)*. For any
fy9,h € X(m) N X*(m) there holds

(4.9) (Q(f.9): h)xim) S I F = e llgllsc my 1l my + 11115 o) 10 22 gl ) N 255 () -
Supposin moreover that g € Eg NE{, then there holds

(Q(f,9), Mxm) S Ifl1x ) 9110 12l 50+ (m) + L [y gl 12 3 ()

(4.10)
+ [1f I+ my N9 g [ Pl |5 o

and
(4.11)  (Q(g, £), hhx(m) S I10)* Fllxc= ) N9 20 1 ll () + 11 f 1 () N9 115 [ ol o
Proof. By expanding the inner product of X(m), we are led to estimate
(QUF9): W xm) S [(QUE9)s W1z 1|
+Y > ‘(Q(@ﬁ‘ﬁf, 059), 0% ) 12 12 (o) -6)| -

lo]=3 0<B<a

(4.12)

The proof of each one of the estimates (4.9), (4.10) and (4.11) then follows the same
approach: For each term appearing in (4.12) we integrate in space the corresponding
homogeneous estimate and then use Holder’s inequality and Sobolev embeddings arguing
similarly as in Step 1 of the proof of Proposition 4.1.

We fix some ¢ > 13/2 + 2|v| such that k > ¢+ 6s + |y|/2, and remark that we can apply
estimate (2.16) of Proposition 2.8 with the weight (v)¥~%% in the sequel.
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Step 1: General estimates of (4.12) in LP-norms. The first term in (4.12) is estimated
using (2.16) and Holder’s inequality LS — L2 — L2, which yields

(Q(f,9), M) r2r2(m)
S )2 Fll iz z.m) 190 220 113 oy 1€0) 2Rl 2 22 ()
1 e e ey 19l 2 13 o 10) 7Bl 2 22 0
+ 1 fll zee 2oy ll (v )? *9ll L2z () 1Pl 22 75 () -

The second term in (4.12) is then estlmated depending on the value of . For the case
B = 0, we also have by using (2.16) and Hélder’s inequality L — L2 — L2 that

(QI7 1, 9), 07 h) 12 12 (m (v)—6%)
S 12V Fll 2 p2 oy 191 Lo s oyt | (0) 2V 3B 12 L2 (509
+ IV Fll 2 s (e HgHLgoHs’*(m(v)—‘iS)H<v>’y/2vihHL%L%(m<v>*65)
+ IVl r2 220 14022 9l poo 112 () —5) I VRl L2 112 oy —65)-
When |3| = 1 we use Hélder’s inequality L — L2 — L2 to get
QO £,009),00) 12 12 (mw)~o%)
S 1P VE fllrar2my-o9) Vgl Lt s oy 1 00) 2 VRN L2 12 (0509

(4.13)

(4.14)

o) +IV2 /I KRV
2L s () I Vagll L gs miwy -6 [{(0) "V 2Rl 2 L2 (mw) -69)
+ V2l pa 2200 102 Vgl Lt g1 oy —09) I V2Pl L2 115 ()60 -
and for || = 2:
(QO87P£,059),05h) 12 12 (m(wy—02)
(4.16) SN2V fllar2my-o9 V201 Lt s oy 102V RN L2 12 (0509

I VafllLams=cw €)||V Il L 15 (my *65)”<U>,Y/2vgh”L§L%(m(v>—65)
F Vel 2w 10 Vagll Lt mz noy-60) | Vahll 12 12 (mo) -5 -
Finally, for § = a we get, using again Holder’s 1nequahty LY — L?E — Li,
(Q(f,039), 03 h) 12 12 (m(v)—6%)
S 2 £l oo 2 mwy -6 [ V3 9ll L2 s ¢ )Z)H<U>7/2vihHL§L%(m<v>*6S)
+ 11l Lo 5 () ||va:gHL2HS’* m(v)*GS)H<U>’Y/2V§h||L%L%(m<v>*6s)
1l g 2y 1€0) 2 V29l L2 = (m ey -5y IV 2Rl L2 113 o) -0)-
We now split the proof into three steps.

Step 2: Sobolev embeddings to prove (4.9). It follows from estimates (4.13)—(4.14)—(4.15)—
(4.16)—(4.17) by using the Sobolev embeddings H2(R?) — L°(R3) and H(R3) — Li(R3)
as in Step 1 of Proposition 4.1.

Step 3: Proof of (4.10). We first observe that

(4.17)

19l 25 (yey S Imgllmzrz + 197 2 s (yey S Ngllmo + gl
and
1) > gll 22 g5 (my S Wwgllzzzz + 1) 0 2 prs ony S Ngllmo + llglleg-
Moreover
1Y Il 22 0my + 16002 Fll 22 yey S min {I F Iy 11150 my }
since k > ¢ 4 6s. Therefore from (4.13) we get
(QUf,9), M) L2 L2(m)
S s oy lgllEo 1ol () + 1 F I emy 191 EE 1Bl () + L F 115 (om) 1912z [Tl m)
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For the case = 0 we remark that, similarly as above, we have
1) 9l r2 13 (o -0) S 79l mzz + 10> 0 2 as amwy-on) S 9l + ll9lle;-
moreover
10)"2V3 £l 12 12 (mgwy -6y + IV Fll 22 L2 (wyey S 1in L Fllx(mys |11 o) }
since k + v/2 > ¢ + 6s. Hence we deduce from (4.14)
QO3 [,9): 07 h) 12 L2 (mv)—69)
S Il gmy gl 1Al my + 11 i amy g1z 1By 4 1L sy [l g s 2l (om)

For all the other cases |5| =1, |5] = 2 and § = «a, we can argue as in Step 1 by observing
that

Vgl Lo s ey + V20l s ey + 1Vl s ey S N9l
as well as

V291l 13 15 gy -2y + V29l 3 205 mgoy—25) + 1 Vadll z2 2 mioy—24) S l9lms,
which thus implies from (4.15)—(4.16)—(4.17) that

QS P£,029),090) 1212 (mwy -y S Nglles (I1F sy Il xmy + 1 5 m 1l (m)) -

Step 4: Proof of (4.11). It follows similarly as in Step 2 above, so we omit the proof. [

4.2. Nonlinear estimates in Fourier-based spaces. We shall now prove nonlinear
estimates in Fourier-based spaces by using the estimates of Proposition 2.8. For polynomial
weight functions m = (v)* we define
1/2
)
)

(4.18) Nl fog.h)(€) = {/OOO ‘@(f(t),g(t))(f),ﬁ(t,£)>Lg(m

Proposition 4.3. Let p € [1,00|. Let k > 13/2 + 5|v|/2 and define the weight function
m = (v)*. For any f,(v)?*g,h € (L% N L?)LfOLQ(m) N (Lé N Lp)LQHS’*(m) there holds

nl/2 s~n1/2 1/2
IVl 90l 2 S 171 e oy 00 G 2 e oV 21 o

(4.19) 1/2 1/2 1/2
+ HfHLPLzHS* m)”gHLlLQHS * )HhHLngoLg(m)'

Supposing moreover that g € (L% N Lg)LfoLg(u_l/Q) (Lé N L?)L%Hg’**(,u_lm), then there
holds

1/2 ~n1/2 Tnl/2
Nl 9 1llLg S UL e o V91 e ey P e
1/2 1/2 1/2
(4.20) I 2 o191 e 2 vy PP 2 12 o
1/2 1/2
e 3 O 2 o ey P 2 1y

and also

~11/2 1/2 1/2
IWonlg. £ 1lllzg S 08150 e ey 1 e o e 1

~1/2 2s 7y 1/2 1/2
+ || ||LpL°°L2( —1/2)||<U> f”L%L?HE’*(m)”hHLIgL%HUS’*(m)

(4.21)

Proof. Observe that we can apply Proposition 2.8 with (v)! < (v)?/?m and we split the
proof into three steps.

Step 1: Proof of (4.19). Thanks to estimate (2.16) we first obtain

\@(f,g)(s),ﬁ(s»m < [ [(@ie-m.5a.5@),,

2(m) 2(m)

(4.22) S IR L2 ((wy/2m) /R3 FE = Mz oy 1) | 123 ()

+ R gz () /R3 17 (€ = )12 oy 2m) NGO L 1z5 (o2 AN

~

o
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which implies
Nmlf,9,h](€) S 11(8) + L2(€)
with

0o . . 1/2
10O s= { [ IRy [ 1706 = )l 1900 )y e}

and

o = 1/2
I(§) = {/O A Gt O s (m) /R3 1f (& =MLz ) 19CE D s~ ()25 m) dndt} :

On the one hand we have

1O S @ rerzon { [ [, 176E = Ml ullate ey dn e}
SE©lenzon [, [ It~ ey ] [ 18, ] an

S IR ez czim [, 1FE =Mz ooy GO 2213y

thanks to Holder and Cauchy-Schwarz inequalities. Moreover, using the same inequalities,
we also obtain

~ 0 2 1/2
B(€) S 1RO 21 {/0 L 1€ = 13 ) ooy 1 dt}

. 0o 1/2
SO zneon [, | 170 =g 180 D gy 1]

S H/};@)HL?HS’*(m) /R3 = M zge 2y 19 L2257 () 25m) -

Taking the L’g norms of each term yields

1/2
1/2 N ~
. PR (TGP L 1F€ = mlsznze ooy T 212 an} B
. S
1/2 ~111/2 1/2
S0z oy VT 2 12 oy IO e 1 oy
as well as
12 N 1/2
P (G —. [ 17 = 2w c2m [T 2113 20m dn}
(4.24) I

1/2 1/2 1/2
S P15 e 3y VO 2 e ey IO 21y
where we have used Holder’s inequality in Lgp X sz followed by Young’s inequality in L*g X Lé.
Gathering previous estimates concludes the proof of (4.19).

Step 2: Proof of (4.20). Starting from estimate (4.22), we first observe that
G a2y S NG a2 (wy2emy S NG~z (wy2emy + 17GOD L2 ((0)20m)

(4.25) S NGOl e ey + 170 2 e
S 1G0 s+ uerr2y + 1T 2172y

~(n
a

On the other hand, we also remark that

(426)  1FE =)l zageyrrzm < min {IFE = m) 2, 1FE = e om )
(4.27) TR L2y r2m) < min {IRCE) 22y Bz (my } -
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Therefore

QU9 1O) 1

' SRz m) /R3 1FCE = MLz |G | r5vv+ o172y A
+ R g5+ () /R3 17 € = Mz ) 1T 2 172y dp

+ () 273 () /Rg 1€ = )22 () |G | 3+ =172

which implies

Nulf, 9, 0](€) S Ta(§) + Ta(&) + T3(€)
with

0 R 1/2
Ti(§) = {/0 A (t, )l L2 (m) /R3 1F (& = M g ) 19 M s 172 dndt} )

o __ R 1/2
T2(§) = {/0 ”h(tag)”HS’*(m) /R3 Hf(t7£ - n)“HS’*(m)Hg(tan)“L%(u—l/Q) dn dt} )

and

0o . R 1/2
136 o= { [ IOz [ 1F0E = iz 19000 e ovy At

For the term T; we can argue exactly as for obtaining estimate (4.23) for I; in Step 2,
which yields

1/2 ~11/2 1/2

||T1 ||Lp S HfHLpLQHﬁ’*(m) ”g”LéLfHS’**(M_I/Q) ”h( )||LpL°°L2(m

Finally, for the terms T, and T3 we can argue exactly as for obtaining estimate (4.24) for
I5 in Step 2, thus we obtain

1Tl < 01 e o N e OO o
and

1Tl S PN a9 e ey IO 2 5 o
The proof of (4.20) is then complete by gathering previous estimates.
Step 3: Proof of (4.21). Thanks to estimate (2.16) we obtain

]@(g, NE©.hO) , (m)] S DGI PPy ] Pl O Py

I gy [, 1FE = g o180 oy
R3
As in Step 2, we use (4.25) and (4.27) to obtain

\<@<g,f><§>,ﬁ<f>>mm)\ S IRz [, 1€ = Dl om0 1 vy

RO gy [ 176 =l 2oy G0 3172

We then prove (4.21) by arguing as in previous steps. ]

We now provide nonlinear estimates involving exponential weights. For ¢ > 0 we define

B ~ R 1/2
(4.28) Nylf. g.hl(€) = { /0 <<Q(f(t),g(t))(£),h(t,€)>>L3(<v>q#_1/2) dt}

where we recall that ((-, '>>L2((v)qu—1/2) is defined in (3.8), and that

QU.9© = [ Q(Fe=m.am) dn

Before proving the result on /\N/'q, we state the following nonlinear estimate for @ in the
new inner product:
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Lemma 4.4. Let ¢ > 0 be fized. For any f = f(x,v), g = g(z,v) and h = h(x,v) such

that f({) 9(&), h(f) € L2 N H3*((0)u=1?) one has uniformly in € € R3
(4.29)

(QU9 ), RO 12 ((uyarr2)
SR iz (wyaumrr2) [, (176 = Dl za(upmmrsmy 1T e (yapmrro)
TG = gz (g T 2 gy 172 ) A0
IOz (i [, (176 =0y 73
7 FE = M2l 1 (qoyop-172) ) A

Proof. We first recall the nonlinear estimates coming respectively from [7, Theorem 1.2]
and [7, Proposition 3.13], both in a crude form using the assumption v + 2s < 0:

QU f2) 3) L3 (u12) S ||f3||H5v*(H—1/2)(Hfllng»*(#—l/z)\Ileng(y—l/z)
13 ey M el e (u-172))

[(QUf1 f2): f3) 12 ((wya-172) = (QUF1, (0) f2), (V) f3) L2112y |
S W sllg (yap—rr2) 1 Fill 2 (ya=rr2) 1 F2ll 2 (a2,
which together yield
QUL f2)s f3) 2 (yap—1r2) S sl g (wyap-1r2) (HleH “(wyap=1/2) 1 f2 0l 2 (yap-12)

11l g oy 2l g (qyap1729 )

Let us turn to the estimates in term of (-, ) 12((,)a;,~1/2)- Concerning the W-estimate, note

o~

that since 7() = 0, the bilinear term W [Q( &—n), (n)),ﬁ(ﬁ)} reduces to

Zlﬂ -~

w|Q (fie—m.am) . he)] = = eptn(© T [@ (7€~ m).5()]

Z/ig

Tiep €0 WE): 0 [Q (fe=m).a0m)],
which is then easily estimated as (where p = p(v) is some polynomial)

w[Q(F(e - m.9(n). hO)](©)

_.|_

(S 1 N R
S’l + ’§| “Wh(g)‘|L2( —1/2) X m ’ p,UﬂQ (f(f—ﬂ)ag(n)»%(u_m)

SR s (yape-r72) (IFCE = Mo 1y G g (129

1T = Ml g () 15D g (1729 )
and using the fact that
18Oz (or2) S 1TBE 2z + 185l g (gap-rr2)
S 173 22 + 1P gz ((apap172):
we actually have
w[Q(F(e—m),9(). h©)](©)
SR s (ugape172) (1FEE = Mg qapep1r) IO 2 (o2

17 = Ml (s 1T e ((oyap2))
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IO gz (porr2y (IFE = Mg oy I
17 FE = M T 2 (quyop172) )
Next, using again 7Q = 0, i.e. Q@+ = Q, we have the term for |¢| < 1

L (@ (Fle—m.gn) @)

St B ) g (yesrz) (€ = Mg (copap1r2) [T 2 g2
17 =z () [T sz (72
el sy (yaprr2) (IFCE = Mz (apeps72y ITOD 2 oy
15 = D2 gy 10D e (quyap172y)
1) s qapap172) (1FE = Ml g (ugaprr2) 17300 22
+ I F& = MG 2 (quyop-172))

and, using that 1Jl|£|2 ~1for |{] > 1

Leor(QUPE = 90) @)

St Ill g (quyap172y (1 = Mgz qapoper2) 1T 12 (quyap172)
1€ =D ey IO g (g 172))
SIR©N e (goyan-172) (1FE = Mgz (ugape-1ay 1T 12 @y
17 = Ml (a1 T g (quyap-172))
1B s (gop-r2) (1 = Ml yaary 17T 23
I FE = M T (quyap172) )

We concludes by gathering previous estimates. ]
We can now estimate N .

Proposition 4.5. Consider some q > 0, as well as some p € [1,00] and r € (3/2,00|. For
any h € L{LP Ly((v)'u~'?) and f,g € LELE Ly () u™ ) N (LEN LY LEH™ ((v)'u~'/3),
there holds

AT

1/2 1/2 ~11/2
(4.30) ~ Hh||LpL2H5 (e —1/2) (”f”LPLooL2 >qu—1/2)”g”(L1OL2)L2HS,**((v)q“—l/z)

1/2 1/2
+ ||f||(L1ﬂL2>L?H3’**(< 1/2)” ||LpLooL2(< >ql/¢71/2)>‘
Proof. We have from (4.29) the bound
~ 1/2 1/2 1/2 1/2
INGLf. 0. Bllly SIRIZ + IT05 + 1415 + 1207

where each term is defined as

o _ ~
:/1:13/0 ||h(t?§)||H5‘**(<1)>q“_1/2)Hf<t7é._n)”L%(#_l/z)Hg(t?77)“]—[5’**((1))‘1“_1/2) dtdn

= A,3 /0 H/H(t7 é-) HH,l‘j’**(<U>Qu*1/2) ” A(t7 € - 77) HH,i’**(<fu>q’u,*1/2—n) H/g\<t7 77) HL%(@))Q#*I/z) dt dT”
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O = [ [T IOz (paperre) 1T E = 1)y 78, m) 52 e

IO = [ [ IOz (pue vy 1770 € = L2 1 ) g2y At

Using Hoélder’s inequality in L? x L? x L3, we have
11(5)2 S Hh(é)”LgHjﬁ**((v)quflﬂ) /R3 19(¢ — 77)HL§H,3’**(<U>q,pl/2)”f(n)HLtooLg((U)qulﬂ) dn,

and then, by Holder’s inequality in L2p X L2p
1/2

< /2
||Il”L§ ~ Hh”Lé’LfHS’**(( Yay— 1/2 r )
&

’/ 19C€ =l L2125+ (0 >qu—1/2)||f( M zge 2 ((yap-1/2) dn

from which we deduce thanks to Young’s convolution inequality in Lé X Lp — Lg

1102z S IR e oy U e (g MU e gy
Similarly, there holds
1221z S IR e qupsesv) WUz e o172 VO e gy
(AP HBH;ELQWWM)||7r’g\uzéiwuf\|;éiw( o2y
||J2||Lp<uh||;@mm( N L e ||1Lé";wL2( Jop1/2)

Finally, we notice that, since r > 3/2, we have that 1¢<1[§|™ e LY, thus
HW@HLéLng((U)qu—l/z) <||1|§|<17T95HL§L§L5((@qu—l/z) + H1\5|>17T<5”L§L3Lg(<v>qu—1/2)
zSH‘EHLgLng’**((v)q,rl/2) + ||‘:/5HL%L§H5»**((@q,rl/z),
from which we deduce (4.30). This concludes the proof. O

As a direct consequence of Lemma 4.4 and the proof of Proposition 4.5, we also deduce
nonlinear estimates for ) in the exponentially weighted Sobolev spaces E,;, with ¢ > 0,
defined in (3.10), by using the new inner product (-, -)g_defined in (3.13) and its associated

norm || - [|&,, together with the space E; defined in (3.11).
Proposition 4.6. Let ¢ > 0. For any f,g,h € E;NE} one has
(4.31) (Q(f.9), M), S Ihle; (I1/1le, lglle; + 1/1le; lglle, ) -

Furthermore, for any smooth compactly supported function x = x(v), we also have for any

£>20
(4.32) (g x e, < lglle, 1 f Ixwye
(4.33) (9. xe, S lglleslflxwyey + I1mgllzz , 1f Ix=(ye)

5. PROOF OF THE MAIN RESULT

This section is devoted to the proof of Theorem 1.1. We fix
(5.1) k>13/247|v|/2+ 8s
and define the weight function m = (v)*. We also consider 6, kg > 0 such that

(5.2) 1<tz

ko
el

and define the weight function mg = (v)*°. Finally we define the weight functions
(5.3) m = m<v>_28 — <’U>k_25, my = m0<v>_25 _ <U>k0_25.

Observe that we have

and ko > 13/2 +5|y|/2 + 8s

ko — 2s > 13/2 + 5|y|/2 + 65
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so that we may apply in the sequel Propositions 4.1 and 4.2 as well as Corollary 3.7 with
the weight function mg, and consequently also with the weights m, mg and m.
Drawing inspiration from [10], we seek a solution to (1.6) of the form

f(t) =h(t) +g(t) € X(m) + E
where the two parts evolve according to the differential system
h(O,ZC,U) :fo(l',’l)), g(O,SC,'U) =0.

We will construct a solution to this system by building a sequence of approximate solu-
tions (hn, gn)RF—o initialized as (ho, go) = 0 and defined inductively by

Ohny1 = (B—v-Va)hnit + Q(hn, hny1) + Qan, Ant1) + Q(hw+1, 9n),
(5.5)  QOgn+1 = (£ —v-Va)gn1 + Qgn, gn+1) + Ahn,

hN+1(O,$,U):f()<.’L',U), gN+1(07$7U):O‘

To do so, we introduce the functional spaces 2" (m), Z%(mp) and &, with ¢ > 0, as the
spaces associated to the norms, respectively:

(5.6) 171y = 5P 1Oy + [ N5 () It
>0 0
(5.7) 17 1%, (o) = sup (1 + £ 1 (t) |5 (mg) + /0 (14 O NP0 15 (mo) A
(5-8) lgllZ, = sup llg(t)Il, +/ lg(t) 1%, dt,
>0 0
where we recall that the norm ||| - [|g, is defined in (3.8) and it is equivalent to || - ||g,, and

that the spaces X(m), X*(m), E; and E} are defined respectively in (1.10), (1.11), (3.10)
and (3.11). Similarly, we also consider the spaces 2" (m) and 2 (mg) defined respectively
by (5.6) and (5.7) but with the weights m and my.

5.1. Stability of the scheme. In this subsection, we will show by induction that if the
initial data satisfies

| follx(m) < €0
with €9 > 0 small enough, then the following bound holds for all N > 0:

(5.9) IAN N 2°(m) + 1EN [l 27 (mo) + 9N llg, S 1follxm) < €0
This is of course true for N = 0. Assume this bound for some N > 0 and let us deduce it

for N + 1.

5.1.1. Stability of hyt1 in norm 2 (m). We start with the first equation of (5.5). The
weak coercivity estimate on B — v - V, from Corollary 3.7 gives for some A > 0

(B=v-Va)hnit, hvii)xm) < =ABn1lxem):
and the nonlinear terms are estimated using Proposition 4.1:

(QUhns b 1), hv 1) xm) SNl () 1A 1 x )
+ [[hn41

% (m) 1A N+ 11 5 () 1A (|5 () »

(QUgn, hvy1), Avsa)xm) SIhav iy 98 1,
+ 11 llx o) 1Pl (my lgn [
as well as the bound (4.10):

(Q(hny1,98), hvs1)x(m) SIhv %oy 98 1,

+ 1en+1llx o) ANl (my lgn 2 -
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To sum up, we have the following energy estimate for hyy1:
1d
24dt

vl my + Ml my SNy (lgn e, + 1A lIxm))

;)

Integrating in time and simplifying by |[An 112 (m), We obtain using the bounds (5.9)

+ g |y e s oy (12wl

AN+l 2 (m) S €ollin+ll 2 (m) + 1 follxmy

which, assuming €9 > 0 small enough, simplifies as

(5.10) AN+l 27m) S Ilfollx(m) < o
This concludes this step.
5.1.2. Stability of hy 41 in norm Z,(mg). As for the estimates with the weight m, we have

for some A >0

1d
o 10+ ey + Av+1 1

N HhN+1”X*(mo) (lgnlle, + 1PN 11X (o))

+ [1hv sl o) vl (mo) (17 1= o) + gyl )

which, using the bounds (5.9) and assuming £y > 0 small enough in order to absorb the
first term in the right-hand side by the left-hand side, simplifies as

1d A
2dt”hNHHX (mo) §||hN+1||§(*(m0)

E(’;) ’
Moreover, since we have ||(v)?/ 2hx (o) < |Allx*(mg) the following interpolation inequality
holds for any R > 0:

(5.11) (Rl o) < Ml (moy + (R~ M=2ETR 1R 3

< vl o) 1en-41 5+ o) (1l (o) + Nl |

thus, taking (R) = (4—>‘9)1/|7| (14 t)1/71, we have for all t > 0
ko)

46 46 _q_ 2k=kg)
O gy < W+ ()T (40
We now plug this control in the energy estimate:

1d
2dt

||hN+1HX(mO)Jr ||hN+1|x*(mO)+9(1+ £) "M 1 1% (o)

(kk

1—2k—ko)
P vl om)

S (U+1)

E;)v

+ [[hv sl o) vl moy (1 1=

and then multiply both sides by (1 + ¢)%:

d 0 A 260 2
{a+e? v }+§<1+t> 11
20—1—
S+t e e

+(1+ t)20||hN+1||X(mo)||hN+1||X*(mo) (HhNHX*(mo) + ||9N||E;) :
Integrating in time and using (5.9), we get
1AN+11% gy S IBN+11%(my + €0llBn+111% () + 1ol g
where we used the fact that 260 — 1 — % < —1sothat (1+¢
Assuming €p > 0 small enough and plugging in (5.10), we finally get

(5.12) N1l 2, (mo) S Il follx(me) < €0-

_1_2(k=kq)
297177 R s integrable.
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This concludes this step.

5.1.3. Stability of gn+1 in norm &;. We now turn to the second equation of (5.5). The
weak coercivity estimate from Corollary 3.5 gives us for some A > 0

(Z—w- Vm)gN+1,gN+1>>Eq < —Allgv 1l 2E{;'

The nonlinear term is estimated using (4.31) of Proposition 4.6:
(Qan, gn+1) gn+1)m, S llanlle, lgn+illE; + llan+ille; lon-+ille, lgnlle;-
The coupling term is estimated using (4.32):
(AhN, gn+1) g, S NI mo) l9N+111E, -

Putting these bounds together et recalling that ||| - [|g, and || - ||g, are equivalent, we obtain
the following energy estimate for gy, 1:
1d
2dt

llgn-+1llE, + Mgn+ilE: Sllgnlle,llan-cille, + lov-ile: lgville, lovle;
+ AN lIx(mo) llgn+1 I,

which, using (5.9) and assuming £y > 0 small enough in order to absorb the first term in
the right-hand side by the left-hand side, simplifies into
(5.13)

A
5 qllovlle, + Slovls; S llowlle; llgneille, lglle; + 1 1x o) lgn-+ s, -
Integrating in time and using (5.9) and simplifying by [|gn11]s,, we finally get

%q < ||9N||é"qHQN+1

lgn+1 %+ 1PN 2 (moy lgn 111,

7+

< eollgn+1 follxm)llgn+1lle,

which implies, assuming g > 0 small enough, that

(5.14) lgn+1lle, S Nl follxmy < €0
This concludes this step.

We therefore deduce (5.9) for N 4+ 1 by gathering estimates (5.10), (5.12) and (5.14),
which completes the stability part of the proof.

5.2. Convergence of the scheme. Consider the successive differences of (hy)3_ denoted
by dyi+1 := hy+1 — hy, that of (gN)‘J’VOZO by en+1 = gN+1 — gn, and consider the equation
satisfied by dy+1

Odni1 = (B—v-Vi)dyt1 + Q(hn,dn+1) + Q(dN, hy)
+ Q(9n,dn+1) + Qen, hn)
+ Q(dN+1,9n) + Q(hn,en),

dn4+1(0,z,v) = 0,

(5.15)

as well as the one satisfied by eny1:

{3t61v+1 =(Z —v-Vy)ent1 + Qgn,en+1) + Qlen, gn) + Adp,

5.16
(5.16) en+1(0,z,v) =0.

In this subsection, we shall establish that for g > 0 small enough the following bound
holds, for some Cy > 0 and all N > 0:

(5.17) lenlle, + Idnll 2 m) + ldnll 27 (mg) S (Cogo) 2.
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5.2.1. Recursive estimates for dn41 in norm 2 (m). Let N € N. We start by considering
the equation (5.15). The estimates of Proposition 4.1 give the following control:

(QUhn s dn11)s dN1)x(m) SNV 4115 oy 1o 1 ()
+ [hn I () | N1 15 ) v 1 |50 ()
and also
(QUgNs dN41), AN+1) X (m) SNAN+1 1% (my 19 |1,
+ llgn e ll[dn-1llx om) ldN+1 1% (m) -
Moreover, estimate (4.10) gives
(QUN11,98), AN 1) X (m) SNy l9n |11,
+ ldnt1llx o) 9w 182 [[dN-+1 [ % (m)
as well as

(Q(hn,en), dN+1)x(m) SIAN+1llx(m)lIh || x+ m)HeNHEq

+ ||dN+1||x*

(m)-

Finally, estimates (4.11) and (4.9) give respectlvely the followmg bounds, which force to
work in the larger space X(m) instead of X(m):

(Qlens hn)s dn+1)x(m) Slldn+1llx ) llen [e [[hn ] x (m)
+ |ldn41

%+ (m) 1PN |+ (my le N | B s
and
(QUN, hN), dN+1)X (m) SNAN+1 1% () 1N |50 (1) 1o |5 (1)
+ N1l (m) |1 v 5= (o) 1V 1| () -

As in the step of stability in Section 5.1.1, we put these bounds together and integrate the
resulting energy estimate to obtain the following control:

AN +101% (my S €olldn 1015 (my + olldntill 2@ llenlls, + €olldnr1ll 2y lldn | 2 ()

where we used the stability estimates (5.9). Assuming £y > 0 small enough, this simplifies
as

(5.18) ldN+1ll 2 (m) S €ollenlle, + eolldn]] 27 (m)

5.2.2. Recursive estimate for dyy1 in norm Zi(mp). Let N € N. Arguing as in the step
of stability in Section 5.1.2, we have

d ’
{0+ 0 dn 1 } + 5

< (14 02l dn 1l x (mo 1dn 41115+ o) (11 B;)
+ (14 )2 dn 41l g 1Ay 5+ (mo) (llen I, + [ldn [ o))
+(1+1) 9||dN+1||X*<mO 1| x (o) (llen]
+<1+t>2"||dN+1||x RN 15 (o) e 125

20—1—
)

A
S+l (o)

E: T HdNHx*(@))

+ 1+t HdN+1Hx(m
After integrating and using the bounds (5.9) from the stability estimate, we are left with
N 111 (mg) S €0lldn+11%: (o) + S0 ldn+11l 25 (mo) (llenlle, + ANl 2 (o) ) + 4115 ()

S eolldn 4113, (mg) + €0 (lenllZ, + 1N 1% (o)) + IdN+11%(m):
(mo (mo (
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where we used Young’s inequality in the last line. Assuming ey > 0 small enough and
plugging (5.18) in, this bound simplifies as

(5.19) ldn-+1ll 2 (mo) < €ollenlle, +eolldnll 2 (mg) + €olldn || 25 (mo)-

5.2.3. Recursive estimates for ey in norm &;. Let N € N. We now consider the equation
(5.16). Using (4.31) we have

(Qlansent1),en+1)g, S llonle, len+illg; + len+illesllens+ille, llove;.

as well as

(Qen,gn) enxi1dm, S llenallms (lenllss lon e, + lells, llgv|e; ) .

and using (4.32) we get
(Adn,eni1)g, S ldnllxmellen+ile,-

Arguing as in Section 5.1.3, we gather these estimates and integrate the resulting energy
estimate in time to obtain the following bound:

len+ille, S llgnlle,llen+ille, + llgnlls,llenlls, + ldnll 2, (mo):

which, using the stability estimates (5.9) and assuming 9 > 0 small enough, simplifies as

(5.20) len+ills, < eollenlle, + lldnll 25 (mo)-

5.2.4. Proof of convergence. We first prove (5.17) by using previous estimates. It is clearly
true for N = 0, so we assume that (5.17) holds for all integers up to some N > 0, and we
shall deduce it for N 4 1. Thanks to estimates (5.18), (5.19) and (5.20) we have obtained,
for all N > 0,

ldni1ll2:m) S €0 (ANl 2 ) + llenlls,)
ldn 11l 2 mo) S €0 (]l 2 (o) + 1l 27 (mg) + llenvlle, )

len+1lle, < collenlls, + [ldnll 25 (mo)-

This implies that
ldn+1ll 27 m) + lldn41ll 25 (mo) + llen+1lle, S co(lldn=1ll2-(m) + ldN-1]l 2 (mo) + llen—1lle,)

and thus, using (5.17) for N — 1, we deduce

N-1 N41
2,(mo) T llen+1llg, S 0(Cogo) 2 S (Coco) 2,

ldN+1ll 2 (m) + ldn41

which proves (5.17).

Therefore, assuming £9 > 0 small enough, the sequence (hy, gn)n>0 is a Cauchy sequence
in 2 (m) x &, and thus converges to some limit (h,g) in 2 (m) x &. In virtue of the
stability estimates, the limit thus satisfies the bounds

o
1l 2 (my = sup [R5y + [ 1O 1 (y A S [ Foll % (m):
t=0 0
(5.21) Rl (mo) = Stgg(l + 2R 1% (o) +/0 (L + > N5 ey A S (10l )

o
lglls, = stggllg(t)!\%q +/0 lg(®) 1% dt < 1LfollXm)-

The solution thus constructed to the original perturbation equation (1.6) is given by letting
fi=h+ge L®Ry;X(m)) N L3(R4;Y(m)), which thus satisfies

up 1Ol + [ (O ey + 1957 Ol202) 2t S ol

This completes the existence part of Theorem 1.1 together with the energy estimate (1.13).
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5.3. Uniqueness of the solution. Consider two solutions f, f € L®(Ry;X(m)) N
L?*(Ry;Y(m)) to (1.6) with the same initial condition f; and verifying

sup [70) oy + [ 150y S ol < B
sup 70y + [ 1Ty dt S ol < 3
=0 X(m) T [y Y(m) 4 < 11J01X(m) = €09

with €9 > 0 small enough. Denote d := f — f the difference of these solutions, which
satisfies

Od = (B—v-Vy)d+Ad+Q(d, f) + Q(f.d).
Arguing as in the previous steps, one gets for some A > 0 the control

1d
5 g 1) + Al ) SNy + Nl ) 13y + Il oy 1l ony L f

13y 1 15 omy + 112l o 1l ¢ ) 1 1 o)

which, once integrated from ¢t = 0 to t =T < oo, gives (with obvious notation)
1l1% ey S (T + 1 £l oo o, 77:%x(m)) + 1 |20, 77:%* (m))

17l o mymy + 122 g0 21 o ) 161 sy
Observing that
16llx=my S I7dllzre + |6 xc-omy S Imllrzre + I8llvemy S I8llxm) + lvm)

we have
”f”m([o,T];X* m)) ~ \FHfHLoo ([0,7];X (m)) T I £1l 22 ([0,T];Y (m)) 5 VTeo + €0

and similarly for f Using the uniform bounds on f and f this becomes
i ey S (T + 20 + VT2 )l ey

Assuming 7' > 0 small enough and €y > 0 small enough, we have (for instance)

14115 ey < HdHJ (m:T)>

which means that d = 0, or equivalently f = f , on interval [0,7]. By continuing this
argument, we deduce that fy gives rise to a unique (global) solution, namely, f. This
concludes the proof of uniquenees in Theorem 1.1.

5.4. Decay estimate. This subsection is devoted to the proof of the decay estimate (1.14)
in Theorem 1.1. We therefore consider the unique solution f = h+ g of (1.6) constructed in
Sections 5.1, 5.2 and 5.3 above, where (h, g) € Z°(m) x &, is a solution to the system (5.4)

and satisfies the estimates (5.21), where we fix ¢ > || and recall that 0 < ¥ < 3(3 — %)

with p € (2, 00]. We shall obtain in the sequel the a priori estimates that implies the decay
estimate (1.14), recalling that we suppose

[ follxmy + 1 foll L2 22 () -52m) < €0

small enough.

We observe that we have already obtained a decay estimate for the polynomial part of
the solution h in (5.21). It therefore remains to obtain a decay estimate for g in the space
&p, which will be done by obtaining estimates in the Sobolev-type space &y . defined by

e}
9 9
(5:22) lall%,. = sup(L+ O lgOll, + [ 1+ g0

2
EE*) dt.

This will require us to obtain uniform estimates in time of A and ¢ in some Fourier-based

spaces (defined below in (5.24), (5.25) and (5.26)).
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Taking the Fourier transform in space of the system (5.4) gives, for all £ € R3,

(&) = (B—iv- Oh(E) + QA h)(€) + Qlg, h)(€) + Qlh, 9)(€),
(5.23) 9:9(6) = (£ —iv-£)g(&) + Qg,9)(§) + AR(E),

h0,&,v) = fo(&,v), 9(0,&,v) =0,
where we recall

Q.9)€) = [ @ (Fe—n).5m) an
(v

Recalling that the weight functions m = (v)* and mg = (v)*0 are defined in (5.1) and (5.2),
respectively, we define the weights /= (v) ~%m and g = (v) ¥*mg. Observe that we can
apply Propositions 3.6 and 4.3 with the weight functions my and m. We also remark that
the (v) 8 appearing in the definition of 7 comes from our definition of the space X(m)
and the weight loss in the nonlinear estimate of Proposition 4.3, which allows us to control
some Fourier-based norm with the energy estimate (see (5.27)).

We then define the Fourier-based functional spaces with polynomial weights .#P (1) and
FL(myg) as the spaces associated to the norms, respectively:

(5.24) 12ll. 22 () == HhHLPLOOL2 )t HhHL”L2H5 * ()
(5.25) 1Rll 7 (mg) == (1 +2)° hHLngOLg(mo) + (1 + t)ehHLngHj*(moy

where the decay parameter € > 0 is defined in (5.2). Moreover we also define the exponen-
tially weighted space 4P as the space associated to the norm:

(5.26) gllgr == HZ]\HLé’Lt"OL%(p—l/?) + H§”L§L§va**(y—1/2)-

For later use, we already observe that
(5.27) HﬁHLéLgva*«@%m) S )? hHL%Lij*(@)Z%) ~ Nl L2 ms s (wy2emy S Nhll2m)
and similarly
(5:28)  lgllcrrz g 12y S 1€ ) N 22y =12y = N9l 2mzmg = =12y S 9l
with [|h]| 2(m) and ||g||s, being controlled thanks to (5.21).

We split the proof of (1.14) into four steps.

Step 1: Estimate of h in norm Z#P(m). We start with the first equation of (5.5). The weak
coercivity estimate on B — v - V, from Proposition 3.6 gives for some A > 0

Re (B = iv- ORE).R(©) , ) < AR e

thus
LR gy + AR
< QU 1)(©).1(9)) 1, + (Qo E) &) o+ (QUR.9)(€), ()
Integrating in time then taking the supremum in time in both sides gives
P17 20 12 m) + 1A T2 13+ (3
< Noalho B B(€)? + Ninlg, b B)()* + Noalhs 9, B)(€)? + [ Fo(©) 132y

2dt

L2(m)

and hence
Rz + IR gz ooy

< Nl o, RJ(E) + Nialg, b B](€) + N[ 9, B1(€) + 11 FolE) | 2m)
Observe that thanks to Proposition 4.3 we have

Gl s Bl < D0V RIS e o I 2

(5.29)
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and
INlg, by ]l 2 + [Nl g, B 2
S BN e oy 1l ) + s W0 PRI g N iy
Thanks to (5.27)—(5.28) and the bounds on h and g from estimate (5.21), we deduce that
[Nl B Bl + WNimlg, By Bz + [Nl g, B
S 1 Foll gy 1l 2y + 1 Foll3d oy 1675 1A Sy

therefore taking the Lp norm of (5.29) yields
1/2 1/2 1/2 1/2 i
18l o) S 101y 1B o) + 1 oll oy Mg 10 5y + 1ol 222y

Recalling that || folx (m) + I fol LEL2((0)~34m) S €0 and taking £9p > 0 small enough we deduce

(5.30) Al zeomy S Il follxm)llgller + Hﬁ)HLng(m)

Step 2: Estimate of h in norm F¥f(mg). As for the estimates with the weight 7 in Step 1,
thanks to Proposition 3.6 we have for some A > 0

5 S B30 + MBIy
< QM 1)(©),1(9)),
+(Q(h, 9)(€), h(€)

2(1mo) ’ 2 (o)
L2(1no)

Moreover, since we have H<U>7/2h||L%(m0) < IRl g5 (mg)» using a similar interpolation
inequality as in (5.11) we have for all £ > 0

0)

260 _ 20 _q_2(k—kq)
630 21+l Hmmwm@+(k) 1+ Al

We now plug this control in the previous energy estimate:

2dﬂm>h2 Hmmmwm)+wrm>WM>%%m
< Q€. H(©) Ly s+ (QUo OO Loy

+«xmm@»R@> +u+w”f%ﬁﬁmﬁ%m,

L3 (o)
and then multiply both sides by (1 + ¢)%’:

1d A
s L+ DI T2y} + 5+ O IR Iz )

2
S A+ (Qhh)(€),h(9) .+ (1+ )7 (Qg, h)(€), (&)
k—kg) ~

2(1mo) L2 (7o)

(02 (@ 9)(©) ©) 1y o+ 407 ROy

Integrating in time then taking the supremum in time in both sides gives

1+ O RN 2 mo) + 11+ 8)°R(E N2 75 (o)
S N[, (L4 6)°h, (14 )°B)(€)? + Ning g, (1 + ) R, (1 + 1) h](€)°
+ N [(1+ )R, g, (148 R + (RT3 L2y + 1 Fo )72 o).
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where for the fourth term in the right-hand side we have used the fact that 6 < (k—ko)/|7|
so that (1 + t)QQ_I_Q(k\%lkO) is integrable. Hence we deduce
1L+ 6 R | L 3 mo) + (1 + DR 121 o)
(5.32) S N [y (14 6)°h, (14 )71 (€) + Ning g, (1 + ) R, (1 + 1) h](€)
+ N (14 )R, g, (14 0 )(€) + [1P(E) | 2o L3 + 1o () 220 -

Using Propositions 4.3 we have

s 1/2 1/2 1/2
Wang [ (U 2) By (U0 Rl S 00 (0 0 RIS e g I iy 10 55y
and
e, (1 2) R, (L) Bl + [Wono [(1+ 6% 9, (L 1) R
1/2 1/2 s Tnl/2 1 2
S NG e vy 1l 52y + 1915 102> (14 DRI e 11 52

Arguing as in previous step, using the bounds on h and g from estimate (5.21) together
with (5.27)—(5.28), we deduce that

[ Nima s (14 6) Ry (L4 OBl g + [N lg, (14 6) Ry (U4 OB g + [N [(1 4+ 6) D, g, (14 )R]
S 1 Fo 5oy V1 E iy 1211 27 gy + 1SN oy 1l 220y + 103y 175 1211 27

X(m) FP(m
therefore taking the L’g norm in the above estimate implies

1/2 1/2 1/2 1/2 1/2 1/2 1/2
11l 220) S 1505y 111 iy 1l 22 gy + 10 N5E oy 1B 22 10) + o Iy 16105 11

+ [Ihll 7oy + I fo(& )HLng(mo)-
Recalling that | follx (m) + I foll 1212 ((v)~8+m) S €0 and taking 9 > 0 small enough yields
1722 (mo) S Il follxmy 12l 22 () + | follx(m) g1l

(5.33) .
+ [Pl 7y + 1 Fo () Lz L2 ()

Step 3: Estimate of g in norm 4P. We now turn to the second equation of (5.5). The
weak coercivity estimate from Lemma 3.4 gives us, for some A > 0,

Re (£ — v ©)F(6), 5N a2y < ~ANGE) 2o o172y

thus

1d, . ~
5&”@(5)”@3(“—1/2) + )\”g(f)||12q;’**(u—1/2)

< (QU0-9)©.T©O) 1y 172y + 1O 3 [T 2172,

where we have used that [[-[|[2(,-1/2) and || -[|2(,-1/2) are equivalent and that the operator
A has compact support in velocity.
Integrating in time then taking the supremum in time in both sides gives

(5.34)

G o 12 m172) + ITET 2 s (=172,
S Nolg, 9. 91(6) + (1 + 0 R(E) | o 1o () | o L2 oyapim172)
where we have used the fact that § > 1 so that (1 + ¢)~% is integrable in the last term.
Hence we deduce
19 Loe L2 172y + 1T L2 15+ (172

< Nolgs 9, 9)() + (1 + ) R(E)l| e L3

Observe that, since p € (2, 00], we have by Proposition 4.5

A7 3/2 1/2
INol: 9 9l S gllifs + lloe gl e umvroy

(5.35)



40 K. CARRAPATOSO AND P. GERVAIS

so that arguing as in previous steps, using the bounds on ¢ from estimate (5.21) together
with (5.28), we deduce

N7 3/2 1/2
INolg, 9, ally < gl + 11 foll iy llg s

Therefore taking the Lp norm of (5.35) implies

3/2 1/2
lgllge < 119155 + 1| folld o g llgr + IRl 52 )

thus taking €9 > 0 small enough, recalling that || follx(m) + HfOHL’ng( (v)~8sm) < €0, gives

3/2
(5.36) laller < lallds’ + 1AlLz2mo)-
Therefore gathering (5.30)—(5.33)—(5.36) and taking g > 0 small enough we obtain

(5.37) 1l 2oy + 1RlL22 (g + g llow S [ follxmy + [l follzzz2imy < €0

Step 4: Estimate of g in &y,. We finally turn to the estimation of g in &4, which is the
most delicate one. Arguing similarly as for obtaining (5.13), we get for some A > 0

S Sl

2qt"INE
where we observe that, in comparison with (5.13), we have a weight (v)7/?my instead of
mg for h on the second term in the right-hand side, which is possible since A has compact
support in velocity. Thanks to estimate (5.21) and the fact that eg > 0 is small enough,
we deduce

(5.38)

+ Ml < Mallellgl- + 12l x yrr2me ol

1d
2dt
We shall now bound by below the dissipation term ||g||g+, by observing that

1 ~
lalle < (0 + OO I y1r2) A < collgllp

gl + HgHE* S Al x (wyr72me) 9 llle-

and 1
gl < [0+ KNGO g orrey d <

for some constants co, c; > 0. We therefore shall focus below on the quantity [[g(&)[ s+ (,-1/2),
that we recall is given by

35 N
639 19O germ = 17O Rguovny + e IO ey

First of all, for the first term in the right-hand side of (5.39) we can argue similarly as
in Step 2 above in order to obtain the interpolation inequality (5.31), therefore we obtain,
using that ||(v)?/2 . 2212y < || - gz (u-172), that for all € € R? and ¢ > 0 there holds

49¢pe TN
PRI [ €3] vy

<G E e (172 + C(L+ 1)

for some constant C' > 0 (depending only on A, 9, q,~).
We now investigate the second term in the right-hand side of (5.39) by splitting the
analysis into two parts : low frequencies || < 1 and high frequencies |¢] > 1. For high

(5.40) L
T @z a2y

2
frequencies || > 1 we observe that 15'&'2 > 1, which implies

1 ~
§1I£|>1||9( )”H”(u 1/2) S < Lig1ll9(€ )H%’i’**(u*l/?) < 1|§|>1||9(5)H12qg,*(u71/2)-

Therefore arguing as in (5.40) we obtain
4196001
(5.41) A

L+ 1) L 3122172

~ —1-2a ~
< e lgv+1 () ws um1r2y + CL+ 1) P G172 (gyap-1/2)-
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We now turn to the the case of low frequencies || < 1. Recalling that 2 < p < oo, we fix a
parameter r > 1 such that

2p
5.42 1+ ——<r<l+—,
(542) T3p— T Ty
which is possible because 0 < ¥ < 3(3 — 7) Remarking that, since |£| < 1, there holds
€12 < %, we obtain by Young’s inequality that for any n > 0 there is C}, > 0 such that
€I a2

VIEl <1 V20, 1<+ e + Gl 8) Pl
We thus deduce
(5.43)

1 (1) g TGO, o

‘£|2 ~ S P 2
= 1|€\<1Wnﬂg(f)nig(u—lm) + Cyly(l +1) rt 1|§|<1|§| rt ||7T9(f)”%g(u—1/2)-

Gathering (5.40)—(5.41)—(5.43) and choosing n > 0 appropriately yields
A —1 —1-29
HHQ(OH?{;**(“—U% > ‘3019(1 + t) 1”‘9(5)”‘2%(/1‘1/2) -C(1+ t) Bl ||9(5)H%g(<v>qu—l/2)
-1 2
O+ T 6T G 1 ooy
which implies

_1—2q
*||9||E* I+ lglls — Ca+6)" " glg,

JE R __2_ ~
=+ 077 [ gl TG oo e
Applying Holder’s inequality for the last term we get

— 2 A\ (|2 ~12
[ taalel T @ NGO u272) 96 S 13121511
since r > 1+ %. Thus we obtain

11—

29 S
*HQHE* I+ Mlglle — CL+ )™ Fllglg, — CA+6) 7 (gl|Z,

which gives, coming back to (5.38),
1d

2 -1 2
* /l9 ]_ t
2 1t E ( ) |||g|”E

—llgll& + *Hg!

11—

< 22 T
1Pl (wyr2me)lgllle + (L +8) " PHglg, + 1+ gl

Multiplying by (1 +¢)*” we thus get
1d
{@+0*gllE} + (1+ )29
29—1— 22

2dt
9—1——1_
S+ t)wHth(@wsz)IIIgIIIE +(1+1) lglg, + (1 + 6> gl

Integrating in time last estimate implies (recall the definition of &, from (5.22))

I911%,. S 17l 2 mo) 91l .. + IglIZ, + lglZe,

where for the first term in the right-hand side we have used that 6 > ¢ + 1/2 so that
(1 +1)2"=9 is integrable and that || - [|x(wy1/2my)) < |l * 1x#(mo); for the second one that

q > ||V so that (1 + t)zl9 R g integrable; and for the third one that r < 1+ 1/(29) so

that (1 + t)w*l*ﬁ is integrable.
Using the bounds (5.21) and (5.37) yields

(5.44) 19150, S [l follxmy + [ foll 222wy < €0,
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which together with the second estimate of (5.21) concludes the proof of (1.14).
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