HYDRODYNAMIC LIMIT FOR THE NON-CUTOFF BOLTZMANN
EQUATION

CHUQI CAO AND KLEBER CARRAPATOSO

ABSTRACT. This work deals with the non-cutoff Boltzmann equation for all type of
potentials, in both the torus T? and in the whole space R?, under the incompressible
Navier-Stokes scaling. We first establish the well-posedness and decay of global mild
solutions to this rescaled Boltzmann equation in a perturbative framework, that is for
solutions close to the Maxwellian, obtaining in particular integrated-in-time regularization
estimates. We then combine these estimates with spectral-type estimates in order to
obtain the strong convergence of solutions to the non-cutoff Boltzmann equation towards
the incompressible Navier-Stokes-Fourier system.
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1. INTRODUCTION

Since Hilbert [50], an important problem in kinetic theory concerns the rigorous link
between different scales of description of a gas. More precisely, one is interested in passing
rigorously from a mesoscopic description of a gas, modeled by the kinetic Boltzmann
equation, towards a macroscopic description, modeled by Euler or Navier-Stokes fluid
equations, through a suitable scaling limit. We are interested in this paper on the
convergence of solutions to the Boltzmann equation towards the incompressible Navier-
Stokes equation, and we refer to the book [67] and the references therein to a detailed
description of this type of problem as well as to different scalings and fluid limit equations.

We introduce in Section 1.1 below the (rescaled) Boltzmann equation, and then in
Section 1.2 we describe the incompressible Navier-Stokes-Fourier system, which is the
expected limit. We finally present our main results in Section 2.

1.1. The Boltzmann equation. The Boltzmann equation is a fundamental model in
kinetic theory that describes the evolution of a rarefied gas out of equilibrium by taking
into account binary collisions between particles. More precisely, it describes the evolution
in time of the unknown F'(¢,z,v) > 0 which represents the density of particles that at time
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t > 0 and position = € €, = T? or Q, = R? move with velocity v € R3. It was introduced
by Maxwell [63] and Boltzmann [15] and reads

(1.1) OF +v-V,F = éQ(F, F),

which is complemented with an initial data Fj;_y = Fy and where € € (0, 1] is the Knudsen
number, which corresponds to the ratio between the mean-free path and the macroscopic
length scale.

The Boltzmann collision operator @) is a bilinear operator acting only on the velocity
variable v € R3, which means that collisions are local in space, and it is given by

(1.2) Q(G, F)(v) = /RS [ B =0.,0)(CLF = G.F) do do,

where here and below we use the standard short-hand notation F' = F(v), G. = G(v4),
F'=F(W'), and G, = G(v}), and where the pre- and post-collision velocities (v, v}) and
(v, vs) are related through
VAU v — vy VU U — v

2 2 2 2 7

where o € S2. The above formula is one possible parametrization of the set of solutions of
an elastic collision with the physical laws of conservation (momentum and energy)

/
and v, =

(1.3) v =

v4v, =0 +0v, and |u|? + |v.)? = [V)? + |0L)2

The function B(v — v, 0) appearing in (1.2), called the collision kernel, is supposed to be
nonnegative and to depend only on the relative velocity |v — v,| and the deviation angle 6
through cos6 := ‘Z:m - 0. As it is customary, we may suppose without loss of generality
that 6 € [0, 7/2], for otherwise B can be replaced by its symmetrized form.

In this paper we shall consider the case of non-cutoff potentials that we describe now.

The collision kernel B takes the form
B(v —vy,0) = [v — vi]7b(cos 9),

for some nonnegative function b, called the angular kernel, and some parameter v € (—3, 1].
We assume that the angular kernel b is a locally smooth implicit function which is not
locally integrable, more precisely that it satisfies

K™% <sinfb(cosf) < K107 with 0<s<1,

for some constant K > 0. Moreover the parameters satisfy the condition
3
(1.4) max{—3,—2—25}<'y§1, 0<s<l, ~+2s>-—1.

We shall consider in this paper the full range of parameters v and s satisfying (1.4), and
we classify them into two cases: When v + 2s > 0 we speak of hard potentials, and when
v+ 2s < 0 of soft potentials. We also mention that cutoff kernels correspond to the case in
which we remove the singularity of the angular kernel b and assume that b is integrable.

Remark 1.1. When particles interact via a repulsive inverse-power law potential ¢(r) =
r~®=1) with p > 2, then it holds (see [63, 25]) that ~ = Z%‘;’ and s = p%l. It is easy to
check that «v + 4s = 1 which means the above assumption is satisfied for the full range of

the inverse power law model.

Formally if F' is a solution to equation (1.1) with the initial data Fj, then it enjoys the
conservation of mass, momentum and the energy, that is,

d
7/ F(t,l’,v)@(?}) dvdr = Oa QO(U) = 17”1 |U|27
dt Jo,xRrs

which is a consequence of the collision invariants of the Boltzmann operator

(1.5) - QF, F)(v)g(v)dv=0, ¢(v)=1v,vf°
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Moreover the Boltzmann H-theorem asserts on the one hand that the entropy
H(F) = / Flog F dvdx,
Q. xR3

is non-increasing in time. Indeed, at least formally, since (z—y)(log 2 —logy) is nonnegative,
we have the following inequality for the entropy dissipation D(f):

D(f) = —%H(F) - —/Q QP F)dvde

1
4 Qs xR3xR3xS2

anl

F'F,
B(v—v*,a)(F/F,ﬁ—F*F)log< *> do dv, dvdx > 0.

FF,

On the other hand, the second part of the H-theorem asserts that local equilibria of the
Boltzmann equation are local Maxwellian distributions in velocity, more precisely that

p(t,fl?) "U—’U,(t, JI)P
D(F)=0 <« FF)=0 & F{z,v)="———""35 ——a5 |
with p(t,z) > 0, u(t,z) € R® and 6(t,x) > 0. In what follows, we denote by = u(v) the
global Maxwellian
o= (2%)*3/%*'“'2/2.

Observing that the effect of collisions are enhanced when taking small parameter € € (0, 1],
one can expect from the above H-Theorem that, at least formally, in the limit € — 0 the
solution F' approaches a local Maxwellian equilibrium. One therefore considers, see for
instance in [12], a rescaling of the solution F of (1.1) in which an additional dilatation of the
macroscopic time scale has been performed in order to be able to reach the Navier-Stokes
equation in the limit. This procedure gives us the following rescaled Boltzmann equation
for the new unknown F¢ = F¢(t,x,v):

1 1
(1.6) OF° + —v -V ,F* = <Q(F®, F°),
€

e2

with initial data F;_, = Fg.
In the torus case 0, = T3 (normalized as |T?| = 1), we shall always assume, thanks to
the conservation laws, that the initial datum F{j satisfies the normalization

(17) L | Bt o dvde = [1,0,3],

that is, the initial data F{j has the same mass, momentum and energy as p, and the
Maxwellian g is the unique global equilibrium to (1.6).

In order to relate the above rescaled Boltzmann equation (1.6) to the expected incom-
pressible Navier-Stokes-Fourier system (described below in (1.15)) in the limit € — 0, we
are going to work with the perturbation f¢ defined by

(1.8) P =p+ey/ufs,

which then satisfies the equation

€ 1 e __ i € 1 e fe
(19) 8tf =+ gv : vl‘f - £2 Lf + 5F(f 7f )7
with initial data f§ = ioi/_ﬁ“ , and where we denote
(1.10) L(f.9) = ™ 2Q(Vaf, v/ig).
and
(L11) Lf = D(/ii ) + D(f, V/iD)-

We already remark that thanks to the collision invariants in (1.5), we have

(1.12) /R T(f, f)IL, v, [o2l/Ed = 0.
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In the case of the torus €, = T3, we observe from (1.7) that f§ satisfies

(1.13) /;3/;3fgﬁalﬁﬂﬁvﬂvp]vﬁxv)dvdx::0,

and from the conservation laws recalled above that, for all ¢ > 0,
(1.14) [, [, £t ool Vi) dods =0
T3 JR3

1.2. The Navier-Stokes-Fourier system. We recall the Navier-Stokes-Fourier system
associated with the Boussinesq equation which writes

Ou+u-Vau+ Vep —v1Azu =0,
0 4+ u- V0 —10A,0 =0,

div, u =0,

Va(p+6) =0,

(1.15)

with positive viscosity coefficients vy, 5 > 0. In this system, the temperature 0 = (¢, x) :
R x Q, — R of the fluid, the density p = p(¢,z) : Ry x Q; — R of the fluid, and the
pressure p = p(t,x) : R4 x Q; — R of the fluid are scalar unknowns, whereas the velocity
u=u(t,r) : Ry x Q, — R3 of the fluid is an unknown vector field. The pressure p can
actually be eliminated from the equation by applying to the first equation in (1.15) the
Leray projector [P onto the space of divergence-free vector fields. In other words, for u we
have

8tu - I/IA:B’U' = QNS(u7 u)?

where the bilinear operator (Ing is defined by

3
(1.16) Qns(v,u) = —%P(div(v@u)—i—div(u@v)), div(v®@u)’ := Z O (viuF) = div(viu),
k=1

and the Leray projector P on divergence-free vector fields is as follows, for 1 < j7 < 3 and

all € € Q,

3 3 .
FoBIYI(E) = FolF)O) — o S 66T () = 3 65 — DIEF(74)(6).

T el2 2
€ & 2 g

where F, denotes the Fourier transform in the spatial variable x € €2, see for instance [10,
Section 5.1].
We therefore consider the system
8tu - l/leu = QNS(ua U),
00+ u -Vt — oA, 0 =0
div, u =0,
Vi (p + 9) =0,

(1.17)

for the unknown (p,u, 6), which is complemented with a initial data (pg, ug, fp) that we
shall always suppose to verify

(1.18) div, ug = 0, Vz(po + 90) = 0.

In the case of the torus ©, = T3, we suppose moreover that the initial data is mean-free,

namely
/ po(z)dx = / up(x) de = / Oo(x)dz =0,
T T3 T3

which then implies that the associated solution (p,u, ) also is mean-free for all t > 0

(1.19) /1‘3 p(t,x)dx = /1‘3 u(t,z)der = /1‘3 O(t,x)dx = 0.
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2. MAIN RESULTS

Our main result establishes a strong convergence in the hydrodynamic limit from
solutions to the rescaled Boltzmann equation (1.9) towards solution to the incompressible
Nabier-Stokes-Fourier equation (1.17) (see Theorem 2.3). In order to do so, we first need
to provide a well-posedness theory for the Boltzmann equation (1.9) (see Theorem 2.1) as
well as a well-posedness theory for the incompressible Nabier-Stokes-Fourier equation (1.17)
(see Theorem 2.2), in such a way that the functional frameworks are compatible for being
able to compare solutions and then to tackle the hydrodynamic limit problem.

Before stating our results we introduce some notation. Given a function f = f(x,v) we
denote f(&,v) = Fx(f(-,v))(§) the Fourier transform in the space variable, for § € ) = Z3
(if Q, = T3) or Qe = R3 (if Q, = R?), more precisely

~

1 —ix-
f(§7v):(277)3/2/1¥36 gf(:v,v)dx'

In particular, we observe that if f satisfies (1.9), then for all £ € €, its Fourier transform

in space fe(f ) satisfies the equation

(21) OF(E) = (L —iev- OF(©) + 2T(7, )(E),

where

N(f9)©) = > T (Fe—n.am) if Q=T
nez3

P9 = [ T (Fe-m.am)dy it 2 =R
For functions f = f(z,v) we write the micro-macro decomposition
(2.2) f=Ptf+Pf, Pt=1-P,
where P is the orthogonal projection onto Ker(L) = {,/i, v/, [v|*\/i} given by

(23 Pf(z,v) = {pm (@) + ulf)(e) -0+ 617] <w>('”‘2“°’)} V().

where
@) = [ o)) do,

(2.4) ulfl(@) = [ | flavoyic) do,
v]? —
("33)\/,17(2)) dv.

The function P+ f is called the microscopic part of f, whereas Pf is the macroscopic part

of f.
We now introduce the functional spaces we work with. For every £ > 0 we denote by
L2((v)*) the weighted Lebesgue space associated to the inner product

Dz = (L @ )z = [ faw)* do,

@) = [ fw)

and the norm
122 (wyey = 1) Fllz2,

where L2 = L2(R?) is the standard Lebesgue space. We denote by H2* the Sobolev-type
space associated to the dissipation of the linearized operator L defined in [4] (see also [44]
for the definition of a different but equivalent anisotropic norm), more precisely we denote

(2.5) 1 g (yey = 10) Fllge
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where

1= [ [ [ MeosO)le = e e [£() = F()] do do, do

+ /R3 /R3 < b(cos 0)|v — vi| " f (v ) [VR(V) — VE(v)]? do dv, do,
which verifies, see [4, 44],

WY 2 Fll 2 qoyey + 1602 Fll s oyey S NFTas ey S 1607282 Fll s oy -
We also define the space (HS*)" as the dual space of H* endowed with the norm
(2.7) [ lzz=y = sup (f, ).

<1
61l g3+ <

(2.6)

For functions depending on space and velocity variables, we shall also use a variant of
the quantity || - || g5+ ((vy¢) defined above in (2.6) that also depends on the spatial variable.

More precisely, for f = f(z,v) we define the quantity

(25) LBty = 1P P2 ey + la(Do)P 22,
where a(D,,) is the Fourier multiplier a(§) = %, which gives, in Fourier variable,
(2.9) IFO ey = IPEF@ e g + g P

. HS ** HS * < L’%n

BGE

Finally, given a functional space X in the variables (,¢,v), we shall denote by F, 1(X)
the Fourier-based space defined as

F (X)) = {fo(t,x,v)!fe X}.

Hereafter, in order to deal with the torus case Q, = T? and the whole space case €, = R?
simultaneously, we denote Ly = (P(Z%) in the torus case and L = LP(R?) in the whole
space case, moreover we abuse notation and write

> (¢ it Q=
[ oag=q <
ﬁ GO it 0
R3

In particular, we shall consider below functional spaces of the type F, 1(L€L§OL%(<U>£))
and f;l(LngHj*(@V)) (or f;l(LgL%va**(@}é))) and the respective norms, for f =
f(t7 :1:7 v)?

1/p
”f”LgL;’OL%(('U)Z) = (/Q’ i;lg ||f(ta£7 )”i%(@y) dg) for pe [1a —|—OO),

5 -

and

. p/2 1/p
1A ez p2 e oy = (/, {/0 I1F(t.€,- s o dt} df) for p e [l,+o0),
3

with the usual modification for p = 4o00.

2.1. Well-posedness for the rescaled Boltzmann equation. Our first result concerns
the global well-posedness, regularization and decay for equation (1.9) for small initial data.

Theorem 2.1 (Global well-posedness and decay for the Boltzmann equation). Let £ =0
in the hard potentials case v+ 2s > 0, and £ > 0 in the soft potentials case v+ 2s < 0.
There is ng > 0 small enough such that for all € € (0, 1] the following holds:
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(1) Torus case Q, = T3: For any initial data f§ € F;l(L%L%(@V)) satisfying (1.14) and
HJ%HLEL%((UV) < no, there exists a unique global mild solution f¢ € f;l(L%LfoL?)((v)e) N
L%L?Hj*((v)f)) to (1.9) satisfying (1.14) and the energy estimate

(2.10) I/ ”L1L°°L2(< *HP fa||L1L2Hf,*( o+ HPfa”LlL%? N HfOHL1L2 (0)0)-
Moreover we have the following decay estimates: In the hard potentials case v+ 2s > 0,
there exists A > 0 such that
N 1 L N .
(2.11) He)\fa”LéLt‘x’L% + g||6/\P fEHLéLfo,‘* + He)\Pfa”LéLng S HfSHLéL%((v)e)a

where we denote eyt e M. In the soft potentials case v+ 2s < 0, if £ > 0 then for any

I<w<< |,Y+28‘ there holds

. 1 N . .
(212) el + 0P Pl + PPz < 1
where we denote py, : t — (1 +¢)%.
(2) Whole space case = R3: Letp € (3A/2, ool. For any initial data f§ € f;l(L%L%((v)z)ﬂ
L?L%((v%)) satisfying HngLéL%((v)g) + ||f05||L§Lg(<v)€) < no, there exists a unique global mild

solution f* € Fy M (LELge Ly ({v) )NLE L Hy™ ((v)))NF; H(LgLe Ly ((0) )NLELEHS* (()"))
to (1.9) satisfying the energy estimate

(2.13)
. €
1P lgzercon + PPl ot | PP
L{L7L3
" € " "
1Pl san + 2IP Flliguzmen + | @PF| | S 1Bl + 15l
£t LgL?L% 3 3

Moreover we have the following decay estimates: In the hard potentials case v+ 2s > 0,
forany 0 <9 < 3(1— 7) there holds

€l

Py
() L¢L7L3
S IF6laez + 155 e a-

where we denote py : t — (141)Y. In the soft potentials case v+2s < 0, if 0 < 9 < %(1 — %)
and ¢ > Y|y + 2s| there holds

P

oo Flsgriers + 2 I00P Flzyrzms +]
(2.14)

pﬁﬁpfa
€ " iz
S ”J%HL%L%((U)Z) + H%”L?L%((v)é)’

Remark 2.1. (i) We observe that in the soft-potentials case v + 2s < 0 we can take ¢ = 0
for the well-posedness result. We only need a well-posedess theory with ¢ > 0 in order to
obtain the decay estimates ((2.12) and (2.15)).

N 1 N
s o0 F s + SIp0P Pl yspee +
2.15

(ii) We observe that the functional spaces are different when working on the torus or
the whole space. In the torus we have a solution in the space f;l(LéL%Hj’*(@}é)),
whereas in the whole space the solution belongs to F, I(L%L?Hg’**(@y)), with clearly
|- ez wyey < I ez =(@ye)- This comes from the hypocoercive-type estimate for the
linearized operator (see Proposition 3.1).

(iii) Another difference between the torus and the whole space appears when dealing with
low frequencies |{| < 1. When working on the torus the only low frequency is £ = 0, which
is controlled thanks to the conservation laws. On the other hand, in the whole space,
the gain estimate for the linearized operator in F, l(LéLng’**(@V)) is not enough to
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control low frequencies in the nonlinear estimates. This is why we also need to work in
f;l(LIg)—type spaces with p € (3/2, o).

The Cauchy theory and the large time behavior for Boltzmann equation for ¢ = 1 have
been extensively studied. Concerning the theory for large data, we only mention the global
existence of renormalized solutions [32] for the cutoff Boltzmann equation, and the global
existence of renormalized solutions with defect measure [6] for the non-cutoff Boltzmann
equation.

We now give a very brief review for solutions to the Boltzmann equation in a perturbative
framework, that is, for solutions near the Maxwellian. For the case of cutoff potentials, we
refer to the works [43, 71, 72, 17, 73] as well as the more recent [74, 31] for global solutions
in spaces of the form L°HY ; and to [55, 62, 47, 70, 33] for solutions in HY, or HYL2.
On the other hand, for the non-cutoff Boltzmann equation, we refer to [44, 45] in the torus
case and to [4, 2, 3] in the whole space case, for the first global solutions in spaces of the
form Hé\’[v by working with anisotropic norms (see (2.6)). The optimal time-decay was
obtained in [68] for the whole space, and recently [30] constructed global solutions in the
whole space.

All the above results concern solutions with Gaussian decay in velocity, that is, they hold
in functional spaces of the type ch\fv for the perturbation f defined in (1.8), which means

that F'—p € Hajs\’[v(u_l/ 2). By developing decay estimates on the resolvents and semigroups
of non-symmetric operators in Banach spaces, Gualdani-Mischler-Mouhot [46] proved nonlin-
ear stability for the cutoff Boltzmann equation with hard potentials in L1L((v)¥u'/?), k >
2, that is, in spaces with polynomial decay in velocity (f € L%L?((v)k,u,l/ 2) means
F — p € LLLX({v)*)). In the same framework, the case of non-cutoff hard potentials was
treated in [49, 7], and that of non-cutoff soft potentials in [22].

The aforementioned results were obtained in Sobolev-type spaces, very recently Duan,
Liu, Sakamoto and Strain [34] obtained the well-posedness of the Boltzmann equation in
Fourier-based spaces L%LtooLz, in the torus case, which was then extended to the whole
space case by Duan, Sakamoto and Ueda in [35], see also [23] for the whole space case in
polynomial weighted spaces. We also refer to the works [8, 21] for recent results on the
well-posedness for non-cutoff Boltzmann using De Giorgi arguments.

In our paper, we establish uniform in € estimates for the rescaled non-cutoff Boltzmann
equation (1.9). Our result in Theorem 2.1 is similar to the ones in [34, 35], but the proof
is quite different. Indeed, thanks to new integrated-in-time reqularization estimates, we
are able to prove the well-posedness of (1.9) using a contraction fixed-point argument in
a suitable functional space that takes into account these regularization estimates, which
is the main novelty in Theorem 2.1. More precisely, we first investigate the semigroup
U*® associated to the linearized operator 5%(11 —ev - V,) appearing in (1.9). We provide
boundedness and integrated-in-time regularization estimates for U® (see Proposition 3.2),
as well as for its integral in time against a source [J US(t — 7)S(7) dr (see Proposition 3.3).
Together with nonlinear estimates for I' (see Lemma 4.1), we are then able to take S equal
to the nonlinear term I'(f, f) and prove the global well-posedness of mild solutions of (1.9),
namely

O =005 + £ [ U= D0, ),

by applying a contraction fixed-point argument. The decay estimate is then obtained as
a consequence of decay estimates for U® (see Propositions 3.4 and 3.8) and for [ Us(t —
7)S(7)dr (see Propositions 3.5 and 3.9). It is important to notice that the fixed-point
takes place in the space f;l(LéLf"L%(@)Z) N L%Lfﬂi’*(@y)) for the torus case, and
in P L(LLLL2((0)) N LALEHE ™ ((0)) N Fy MERLGPL2(0)) 0 LELEHE™ (1)) for the
whole space, that is, the integrated-in-time regularization appears in the functional space.

It is worth mentioning that the integrated-in-time regularization estimates as well as
the estimates for [J U(t — 7)S(7) dr are the key ingredient of our method. On the one
hand, they are the main novelty that allows us apply a contraction fixed-point argument
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as explained above. On the other hand, they are also crucial for establishing the strong
convergence in the proof of the hydrodynamic limit established below in Theorem 2.3.

2.2. Well-posedness for the Navier-Stokes-Fourier system. Our second result con-
cerns the global well-posedness of the incompressible Navier-Stokes-Fourier system (1.17)
for small initial data.

Theorem 2.2 (Global well-posedness for the Navier-Stokes-Fourier system). There exists
m > 0 small enough such that the following holds:

1) Torus case ), = T3: For any initial data (po,uo,0) € F, 1 (LL) satisfying (1.19) and
x 13
||(ﬁ0,ﬂ0,§0)\|Lé < m, there exists a unique global mild solution (p,u,0) € f;l(L%Ltoo N

Lg((ﬁ))Lf) to the Navier-Stokes-Fourier system (1.17) satisfying (1.19) and the energy
estimate

1P, @, 0)l| Ly rge + [1€€) (P, 6 O) 12 S [1(Pos o, Bo) -

(2) Whole space case y = R3:A Let p € (3/2,00]. For any initial data (po,uo,bp) €
]:;1([% N L) satisfying ||(po, To, GO)HLE + ||(po, o, QO)HLZ < m1, there exists a unique global
mild solution (p,u,0) € f;l(LgLfo N Lé(|£\)L? NLELE N L§(|§|)L§) to the Navier-Stokes-
Fourier system (1.17) satisfying the energy estimate

-~ -~ -~ ~

15 8Osz + 11€1P T O)azz + 11530l z e + 11155, 0) o2
< 170, Bo, Bo)ll 2 + 1170, To, Bo)l

The incompressible Navier-Stokes equation, that is, the first equation in (1.17), possesses
a vast literature so we only mention a few works in the three dimensional case below,
and we refer the reader to the monographs [58, 10] and the references therein for more
details. On the one hand, global weak solutions for large initial data were obtained in the
pioneering work [59] (see also [51]). On the other hand, global mild solutions for small
initial data were obtained in [37, 54, 28, 19, 20, 38| in different Lebesgue and Sobolev
spaces, and we refer again to the book [58] for results in Besov and Morrey spaces. We
mention in particular the work of Lei and Lin [57] where global mild solutions in the whole
space R? were constructed in the Fourier-based space L%(!f |~H)Lge.

Our results in Theorem 2.2 are maybe not completely new, but we do not have a reference
for this precise functional setting (observe that the functional spaces in Theorem 2.2
correspond exactly to the same functional setting as in the global well-posedness for the
Boltzmann equation in Theorem 2.1). Therefore, and also for the sake of completeness, we
shall provide a complete proof of them in Section 5.

Our strategy for obtaining the global solution u for the incompressible Navier-Stokes
equation follows a standard fixed-point argument. As in the proof of Theorem 2.1, we first
obtain boundedness and integrated-in-time regularization estimates for the semigroup V'
associated to the operator 1A, (see Proposition 5.1), as well as for its integral in time
against a source [3 V(t — 7)S(7)dr (see Proposition 5.2). We then combine this with
estimates for the nonlinear term Qg (see Lemma 5.3) to obtain, thanks to a fixed-point
argument, the global well-posedness of mild solutions of the first equation in (1.17), namely

w(t) = V(t)uo + /0 "Vt = 1) Oxs (u(r), u(r)) dr.

Once the solution u is constructed, we can obtain in a similar (and even easier) way the
well-posedness of mild solutions of the second equation in (1.17) for the temperature 6.
Finally we easily obtain the result for the density p thanks to the last equation in (1.17).

2.3. Hydrodynamic limit. Our third result regards the hydrodynamic limit of the
rescaled Boltzmann equation, that is, we are interested in the behavior of solutions
(f%)ee(o,1) to (1.9) in the limit e — 0.

Let (po, uo,Bo) be an initial data veryfying (1.18) (and also (1.19) in the torus case) and
consider the associated global solution (p,u, ) to the incompressible Navier-Stokes-Fourier
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system (1.17) given by Theorem 2.2, where the viscosity coefficients vy, v, > 0 are given as
follows (see [12]): Let us introduce the two unique functions ® (which is a matrix-valued
function) and ¥ (which is a vector-valued function) orthogonal to Ker L such that

1 |v|? 1 5— |v|?

\/ﬁL(\/ﬁ@) = ngxg —v®u, \/EL(\/,E\I/) = 5 v,

then the viscosity coefficients are defined by
1 2
=15 [ LIy, = [ 0 L(/EY) hdo
10 Jgrs 15 JRrs
We define the initial kinetic distribution gy € Ker L associated to (pg, ug, o) by

v|? —
(2.16) gd%v%:P%MMOZ[m@ﬁ+UM@‘v+&qu|2wlv%@%

and we suppose that gg is well-prepared in the sense

(2.17) Ve -ug=0 and po+6y=0.

We then consider the kinetic distribution g(t) € Ker L associated to (p(t), u(t),6(t)) by
2 _

(2.18) g(t,x,v) = Py(t,z,v) = [p(t, z) +u(t,x) - v+ 0(t, x)(|v|23)] Vi(v).

Theorem 2.3 (Hydrodynamic limit). Let (f§)ec(0,1) satisfy the hypotheses of Theorem 2.1
and consider the associated global unique mild solution (f%).cq) to (1.9). Let also
(po, uo, o) satisfy the hypotheses of Theorem 2.2 as well as (2.17), and consider the
associated global unique mild solution (p,u,0) to (1.17). Finally, let go = Pgo be defined
by (2.16) and g = Pg by (2.18). There exists 0 < ne < min(ng,m) such that if

max (|| f5llzyze: [1Gollaze) Sz in the case Q= T,

max (HngLéL% + ”f5||L§Lg, Hf]\o”LéLg + ||§0||L§Lg) <1y in the case Q, =R,
for all e € (0,1] and
. As o~ —
il_{% 115 QOHLéLg 0,
then there holds
. AE‘ ~ _
(2.19) Ehg(l) (P gHL%L;’OLg =0.

Remark 2.2. (i) One can get a explicit rate of convergence in (2.19) if we suppose that the
initial data go has some additional regularity in z, namely a rate of €9 if the initial data go
satisfies |](§>5§0||L%L% < oo for ¢ € (0,1]. We refer to (6.25) and (6.26) for a quantitative

version of this result.

(ii) Our methods can also be applied to the Landau equation with Coulomb potential, and
we obtain similar results as in Theorem 2.1 and in Theorem 2.3.

(iii) Our result concerns well-prepared data for the fluid equation, namely (po, uo,6o)
associated to the initial kinetic distribution go satisfies (2.17). In the whole space, fluid
initial data that are not well-prepared could be handled as in [39] by using dispersive
estimates. In the case of the torus, we refer to [52] who handle the initial fluid layers for
fluid initial data that are not well-prepared.

Before giving some comments on the above result and its strategy, we start by providing
a short overview of the existing literature on the problem of deriving incompressible
Navier-Stokes fluid equations from the kinetic Boltzmann one, and we refer to the book by
Saint-Raymond [67] for a thorough presentation of the topic including other hydrodynamic
limits. The first justifications of the link between kinetic and fluid equations were formal and
based on asymptotic expansions by Hilbert, Chapman, Cowling and Grad (see [50, 27, 42]).
The first rigorous convergence proofs based also on asymptotic expansions were given
by Caflisch [18] (see also [56] and [29]). In those papers, the limit is justified up to the
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first singular time for the fluid equation. Guo [48] has justified the limit towards the
Navier-Stokes equation and beyond in Hilbert’s expansion for the cutoff Boltzmann and
Landau equations.

In the framework of large data solutions, the weak convergence of global renormalized
solutions of the cutoff Boltzmann equation of [32] towards global weak solution to the fluid
system were obtained in [12, 11, 40, 41, 60, 61, 67]. Moreover, for the case of non-cutoff
kernels, we refer to [9] who proved the hydrodynamic limit from global renormalized
solutions with defect measure of [6].

We now discuss results in the framework of perturbative solutions, that is, solutions near
the Maxwellian. Based on the spectral analysis of the linearized cutoff Boltzmann operator
performed in [65, 26, 36], some hydrodynamic results were obtained in [66, 13, 39], see also
[24] for the Landau equation. Moreover, for the non-cutoff Boltzmann equation, we refer
to [53] where the authors obtained a result of weak- convergence in L°(H2 ) towards
the fluid system by proving uniform in e estimates. Up to our knowledge, our paper is
the first to prove a strong convergence towards the incompressible Navier-Stokes-Fourier
system for the non-cutoff Boltzmann equation. We also note here that, compared to former
hydrodynamical limit results, in our work we do not need any derivative assumption on
the initial data.

We now describe our strategy in order to obtain strong convergence results. Our approach
is inspired by the one used in [13] for the cutoff Boltzmann equation, which was also used
more recently in [16, 39] still for cutoff kernels and in [24] for the Landau equation. Indeed,
as in [39, 24], using the spectral analysis performed in [36, 75, 76], in order to prove our
main convergence result, we reformulate the fluid equation in a kinetic fashion and we then
study the equation satisfied by the difference between the kinetic and the fluid solutions.
More precisely, we denote the kinetic solution by

fo() =US() f5 + O[5, F @),

and we observe, thanks to [13], that the kinetic distribution g associated to the fluid
solution (p,u, ) through (2.18) satisfies

g(t) = U(t)go + ¥[g, 9(t),

where U is obtained as the limit of U® and W as the limit of ¥¢ when € — 0. The idea is
then to compute the norm of the difference f¢ — g by using convergence estimates from U*®
to U (see Lemma 6.3) and from W€ to ¥ (see Lemma 6.4), which are based on the spectral
study of [75, 76], together with uniform in e estimates for the kinetic solution f¢ from
Theorem 2.1. This was achieved in [39] for the cutoff Boltzmann equation by applying a
fixed-point method, however, as explained in [24], this can not be directly applied to the
non-cutoff Boltzmann and Landau equations due to the anisotropic loss of regularity in
the nonlinear collision operator I'. To overcome this difficulty for the Landau equation,
the authors in [24] proved new pointwise-in-time regularization estimates not only for the
semigroup U¢ but also for the solution to the nonlinear rescaled kinetic equation, which
were then used to close the estimates and obtain a result of strong convergence.

In our work, we propose a new method in order to obtain strong convergence in the
hydrodynamic limit using only the integrated-in-time regularization estimates (as opposed
to pointwise-in-time regularization estimates as in [24]) for the semigroup U® as well as for
J3US(t —1)S(7) dr. More precisely, the fixed-point argument in the space F, 1(L§L§°L% N
L%L%H;j’*) for the torus case, or in f;l(L%LfoL%ﬂL%Lfﬂf;**) ﬂ]—';l(ngLt"oLgﬁLé’L%Hg’**)
for the whole space, used for the global well-posedness in Theorem 2.1 above together with
the corresponding energy estimates are sufficient to estimate the F, 1(LéL,?OL%)—norm of
the difference f¢ — g and obtain strong convergence.

2.4. Organization of the paper. In Section 3, we first establish basic properties for
the rescaled linearized non-cutoff Boltzmann collision operator and then compute the
basic estimates for the associated semigroup. In Section 4 we prove the well-posedness for
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the rescaled non-cutoff Boltzmann equation. We establish well-posedness for the Navier-
Stokes-Fourier system in Section 5. Finally we obtain the hydrodynamical limit result in
Section 6.

3. LINEARIZED BOLTZMANN OPERATOR

It is well-known, see for instance [64] and the references therein, that the linearized
Boltzmann collision operator L, defined in (1.11), satisfies the following coercive-type
inequality

(3.1) (Lf, oz < =APHF G

where we recall that PX = I — P and P is the orthogonal projection onto Ker L given by
(2.3). For all € € (0,1] and all £ € Q}, we denote by A®(§) the Fourier transform in space

of the full linearized operator E%L — %v - Vg, namely

(3.2) AS(E) = é(L Ciew-£).

We first gather dissipativity results for the operator A®(€) obtained for instance in [69],
that we reformulate below as in [23] and inspired from [24, 14] in order to take into account
the different scales related to the parameter ¢ € (0,1]. For every £ € Q’5 we define

BIJ.a)(©) = 0] MIPG(6)) + h3¢0la(e)) - MIPF(e)
+ Zae @ ulfio) ™ {oPLate)] + olaer}
+ 2@ g ©) ™ : {BIP o) + ol lr)
531

51 eplF(€)] - ulg(e)] + é@lsm@@] ulf€)).

with constants 0 < d3 < 09 < 01 < 1, where [ is the 3 x 3 identity matrix and the
moments M and © are defined by

= [ ool =5)viwde,  elf= [ fev-D) /i),
R R

and where for vectors a,b € R3 and matrices 4, B € R3*3, we denote

1 3
(CL & b)sym = §(a]’b/€ + akbj)lgj,kg& A:B= Z AjkBjk-
Jik=1

We then define the inner product ((-,))z2 on L? (depending on &) b

~

(3-3) (), 5N 1z = (J(€),()) 2 + BIS, g)(&),

and the associated norm

(3.4) IF N7z = (F (&), FED1a-

In a similar fashion, for any ¢ > 0, we define the inner product ((-,)) 2 ey on L2 ({v)%)
(depending on &) by

(F(). 5 L2 (pyey = (FE),G(E)) 12 + 6o (PEF(€), PHG(E)) 12wy

(3.5)
+eBl[f, g](£),
with d; < 09 < 1, and the associated norm
(3.6) IFENZ 2 qwyey = (F()s FED La((wye)-

It is important to notice the factor € in front of the last term in the right-hand side of (3.3)
and (3.5).

Arguing as in [69], the main difference being the factor ¢ at the second term of (3.3)
and (3.5), we obtain the following dissipativity result.
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Proposition 3.1. We can choose 0 < 63 < 62 < 61 < 6g < 1 appropriately such that:

(1) The new norm || - [l L2 (wyey is equivalent to the usual norm || - || g2 ((wye) on L2((v)%) with
bounds that are mdependent of € and €.

(2) If Q. = T3, for every f satisfying (1.14) we have, for all & € Z3,

~ -~

Re((A%(€)F(©). FEM iz < —do (S IP-FOI3 e, + IPFOIE: )

for some constant Ag > 0.

(3) If Q. = R3, for every f we have, for all ¢ € R3,

~ ~

R 2
Re((A®(€)F(€), FEN 12 < —o (;HPiﬂs)n%{;W o

2

for some constant Ag > 0.

The aim of this remainder section is to obtain, using the dissipativity result of Proposi-
tion 3.1, decay and regularization estimates for the semigroup associated to the linearized
operator A°. We denote in the sequel by

(3.7) 0%(t,€) = 'O,
the semigroup associated to A%(&), and by
(3.8) US(t) = F; 'O (t) Fo,

the semigroup associated to E%(L —ev-Vy).

3.1. Boundedness and regularization estimates. We first provide boundedness and
integrated-in-time regularization estimates for the semigroup U® (see Proposition 3.2) as
well as its integral in time against a source fj U*(t —7)S(7) d7 (see Proposition 3.3). These
are the key estimates we shall use later in order to prove the well-posedness results for the
rescaled Boltzmann equation (1.9) in Theorem 2.1. They are also crucial for establishing
the convergence of some of the terms in the proof of the hydrodynamic limit in Theorem 2.3.

Proposition 3.2. Let £ >0 and p € [1,00]. Let fo € L%Lg((@ﬁ) and suppose moreover
that fo verifies (1.14) in the torus case Q, = T3. Then
H ¢l

Hfjs(')ﬁ)”L’gLfoLQ( e)+*IIPLU€( )fOHL"L2H“‘ . PU*(-) fo

s S follzrz(wyeys
£t v

and moreover, in the torus case, we also have that US(t) fo verifies (1.14) for all t > 0.
Remark 3.1. Observe that, in the torus case €2, = T?, one can replace the term %Pﬁ (1) ]?0
in above estimate by PUS(-) fo since U%(t) fo verifies (1.14).

Proof. Let f(t) = U¢(t) fo for all t > 0, which satisfies the equation

1
(39) 0f = 5(L—e0- V), fiemo = fo
We already observe that in the case of the torus, f(t) verifies (1.14) thanks to the properties
of L. Moreover, for all ¢ € Z3 (if Q, = T3) or all £ € R3 (if Q, = R?), the Fourier
transform in space f satisfies
(3.10) OHf(&) = N (O)F©), [ (=0 = fo(€).
Using Proposition 3.1 we have, for all ¢ > 0,

~ ~

2dt”|f( M Zz(wyey = Re@AT(E) S (), FION L2y

<20 (BIP TN + S WPTONE:)
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which implies, for all ¢t > 0,
7 2 1 t 17 2 |f|2 2 < If 2
17 + 25 | IPHFT e ey dr + / @2 IPFE O ar < 1Ay

where we have used that || f(¢)]| 12 is equivalent to || f F O 12 independently of £ and e.
Taking the supremum in time and then taking the square-root of previous estimate yields

IOl cace + LI FO Nz H p < 1Ol

Lng

and we conclude by taking the Lg norm. O

Proposition 3.3. Let ¢ > 0 and p € [1,00]. Let S = S(t,z,v) verify PS = 0 and
(v)'S € LLLF(Hy*)', and denote

t) = /Ot US(t — 7)S(r) dr.

. €l o
11 sz + 2P B guzm o H< )

Then

v5
R < ell{v) SHLE’L%(HS’*)"
IPI2L

gt

Remark 3.2. As in Remark 3.1, we observe that in the torus case €, = T2 one can replace

the term %P:q\s in above estimate by Pgs.

Proof. We first observe that gg satisfies the equation

(3.11) digs = é_%(L —ev-Va)gs + S, gu—o =0,
thus, for all for all ¢ € Z3 (if Q, = T3) or all £ € R3 (if Q, = R3),
(3.12) 0,5 (§) = A(©)7s(6) + 5(&). §()y—o = 0.
that is, for all £ > 0 |
(313 ds(t,6) = [ 0%t~ 7.93(r &) ar

We remark from (3.3) (if € = 0) or (3.5) (if £ > 0) and the fact that P.S = 0 that

(8(€) 35 = (51€)35(€z + 0P S(E) P 15Oy +2B(5:951(0)
= (S(£), P gs(&)) 12 + 60 (PS(€), PG5 (€)) 12yt + £BIS, gs](€).

Using again that PS = 0, so that p[S] = u[S] = 0[S] = 0, we have

BIS,gs](€) = 1 f T esfas (- MIPSE)] + 5 f ep €@ ulls©)™™ : PS5,

therefore observing that for any polynomial p = p(v) there holds

S(E)p(v)y/m(v) dv| S 15z

‘R3

we get
(B[S, g5)(€)] < [PLS(O)] s <’§>‘2HPgs< Olls < IP-5(E)ae) <‘ LIP3l
Moreover R R
(5(8), PLGs(©)) 2 S 1S sy PG5 ()] o
and
(S(£),PGs(E)) L2 (wye) = () S(E), (W) PLGs (&) 12
5 1) SE) | gy | (0) PG () g



HYDRODYNAMIC LIMIT FOR THE NON-CUTOFF BOLTZMANN EQUATION 15

Gathering previous estimates yields

(3.14)
(S(€), TN L2 (0yey S WY SO sy <|PL§S(§)HHS’*((U)Z) +5<’§>|P§s(§)|Lg> :

Using Proposition 3.1 and arguing as in Proposition 3.2 we have, for all ¢ > 0 and all

£ ey,
(3.15)
1d 1o &
th”’gS( )H|ig((v>£) < —Xo <82||PJ_QS(£)H12LIS’*(<U> ) <| ’> IPgs(¢ )H%g)
5 - £
+ ) Sl sy (HPigs(f)HH:,,*( (v >+€<H>\|Pgs( )HLg)

< 20 (B2 + L PGS (o) 2
5 \ 2P0z + g lPIs Oz

O (0) SO s

where we have used Young’s inequality in last line, which implies

_ 1ot ¢?
19506, R + 3 | P45 OBy 07 + [ {S131IPGs(r 3 ar

2 2
. /0 10)'5(7, ) 250y dr-

Taking the supremum in time and then taking the square-root of previous estimate yields

S el S sy

_ €] s
- Z|pt 5 + || =P
15 (€] o= £2 (o) H 95z (o) H@ 95() o

and we conclude by taking the Lé’ norm. O

3.2. Decay estimates: Hard potentials in the torus. In this subsection we shall always
assume v + 2s > 0 and Q, = T2, and we shall obtain decay estimates for the semigroup
U? (see Proposition 3.4) as well as its integral in time against a source [j U*(t — 7)S(7)dr
(see Proposition 3.5). We recall that given any real number A € R we denote ey : t — e

Proposition 3.4. Let (> 0. Let fo € LLL2((v)"), then

I 1 IR I
He/\UE(‘)fOHL%LgOL%(@)’f) + gHeAPLUE(‘)fOHL%L%Hﬁ‘*((v)‘) + ||e/\PUE(')f0”L§L§Lg
S ||f0||LéL12)(<v)f)7
for some X\ > 0 (depending on Aoy of Proposition 3.1).

Proof. Let f(t) = U=(t) fo for all t > 0 which satisfies (3.9), so that f(t,&) = U=(¢,) fo(€)
satisfies (3.10) for all ¢ € Z3. Using Proposition 3.1 we have, for all ¢ > 0 and some A\g > 0,

S TIF Oz ) < o (SIPLFOe(p + IPFEIE: )

which implies, since || - || s (()e) = | (v)1/2+s . ||L%((U>e) > |- [[2((ye) and the fact that
(23 )]HLQ y¢y is equivalent to HJ?@)”L,%((u)f) independently of ¢ and &, that

S ST ey < ~MIFO W) ~ 7 ( SIPFO By + IPFOIE:)

for some positive constants A\, > 0 depending only on the implicit constants in Proposi-
tion 3.1-(1) and on A9 > 0 appearing in Proposition 3.1-(2). We therefore deduce

d ~ 1 - ~
T ATy < —oe™ (52||PLf<s>H%I5,*(<v>e) + |le(£)|!%5> :
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which implies, for all ¢t > 0,
PTG ey + 5 [ NPTz a7 + [ IR Fir, €)1 ar
G

where we have used again that || f(¢)|| £2((vy) 18 equivalent to [| f FO)| £2((vy¢) independently
of £ and e. Taking the supremum in t1me and then taking the square root of previous
estimate yields

1 .
lexf ()l zge L2 ((wyr) + ZllexP ANz mze ey + lexP F(&)ll 222 S 1ol 2wy
and we conclude by taking the L% norm. O

Proposition 3.5. Let £ > 0. Let A > 0 be given in Proposition 3.4. Let S = S(t,z,v)
verify PS = 0 and ey (v)’S € L%L%(Hj’*)’, and denote

- /t US(t — 7)S() dr.
0

R 1 . - g
lexgslriree na ey + gHGAPLgsHLgLst’*(@V) +llexPslirizzre S elleatv)™Slipicacgey-

Then

Proof. Recall that gg satisfies equation (3.11) and g verifies (3.12) for all £ € Z3 as well as
(3.13). Thanks to (3.15) and using that || - || s ey > (| (v)7/2+s . l2(wyey = T ez
as in the proof of Proposition 3.4, we get for all t > 0

1d ~
> 3135y < MO gy — o ( HIP GOz oy + PO

O (0) SO s

for some constants A, o, C' > 0. We therefore deduce

d 2t 2 2Xt ~ 2
G (PN} < —0e (S IP 5O ey + IPTIE;

02 (0) S (©) 25y

which implies, for all ¢ > 0,
1t
PANATES 2 2\s 1~ 2
€ ||QS(75»§)||L5(<U>Z) +€2/0 e || P QS(Taf)HHgv*((v)/é) dr

' t ~
+ / 62>\S”P§S(7—7£)H%2 dr S 52/ 62)\3H<1}>€S(7—7 5)”?]{5*)/ dr.
0 ! 0 )

Taking the supremum in time and then taking the square-root of previous estimate yields

. 1 N N .
||eAQS(§)||L§°Lg((U>f) + gHeAPlgs(f)”Lin**((u)f) + ||eAPgS(§)||L§Lg S 5He>\<U>Z5(§)HL?(Hgv*)u
and we conclude by taking the L% norm. O

3.3. Decay estimates: Soft potentials in the torus. In this subsection we shall always
assume 7 + 2s < 0 and €, = T3, and we shall obtain decay estimates for the semigroup U*¢
(see Proposition 3.6) as well as its integral in time against a source f(f Us(t—7)S(r)dr (see
Proposition 3.7). We recall that given any real number w € R we denote p,, : t — (1 +¢)%.

Proposition 3.6. Let £ > 0 and fy € L%Lg(( v)Y), then for any 0 < w < we have

Iy+2s] +2 |
S 1 PSS St
prUs(')fOHL%Lg’OL% + gHPwP UE(')fOHLéL?Hf;‘* + ”pwP(UE(')fO)HL%LfL%

S 1 follziez +IUFC) foll Lt Lge 2 (wye)-
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Proof. Arguing as in the proof of Proposition 3.4, denoting f(t) = U®(t) fo and using that
|- l[arss > [[(0)772F5 || 2, we obtain

(3.16)

N 1 N .
3 IFOIR; < Xy > FQ)I; — o ( SIPFOIs- +IPFOIE; ).

for some positive constants A, > 0.
We now observe the following interpolation inequality: for any R > 0 there holds

(3.17) IF N7 S R w)2H F©)I72 + (RY > UFO 7200
Therefore coming back to (3.16) and choosing (R) = [(A/w)(1 +t)]"/"*28l yields
~ 1 ~
S IFOIE; < o+ 0 RO, - o (SIP TR, + IPFOI; )

+ O+ )T FO e

for some constant C' > 0 (independent of ¢ and ). Multiplying both sides by (1 + ¢)2*
gives

L O2IFOIE} < —o 1+ 0% (SIPFQ B + IPFOI; )

2w—1—2— 1 2/ 12
+C(1+1) P2 P72 (0y)-

Integrating last estimate in time gives, for all t > 0,

Qa‘g_,

1
2

N t R ¢ R
A+ NI + o [+ PP R € e dr+ [ (L4 > [PF I, dr

—~ t 2¢
5 ||f0(§)||%% sup ||f(7— S)HLQ /0 (]. + 7')2“}717W d’T,

T7€[0,¢]

where we have used again that H\ lz2 is equivalent to || - [|z2 independently of § and

)le‘

e. Observing that (1 +¢ \V-fQSI’ we can take the

supremum in time in last estimate and then its square-root to obtain

T is integrable since 0 < w <

. 1 . . . .
1Pw f(E)lLser2 + gHPwPLf(f)HLij’* + PP f (5,202 < [1fo(E)llLz + [1F () pse 2wy

and we conclude the proof by taking the L% norm. O

Proposition 3.7. Let S = S(t,z,v) verify PS = 0 and p,S € L%L%(Hgv*)’ for some
O<w< and £ > 0, and denote

— /t Us(t —7)S(T)dr.
0

Assume that gs € L%Lf"L%((vV), then we have

|’Y+23\

. 1 L ~
prgSHL%LtOOL% + ngwP gS”LéLfo,’* + prPgSHL%LfL%
S ellpoSlirira ey + 19sllirser2 )0y

Proof. Arguing as in the proof of Proposition 3.5, but using now that || - [| s ((mye) >
|| (w)7/2Fs . |22 ((wy) @s in Proposition 3.6, we have

1d

1y 2alsOI < Al oG5l o (S IPLsE - + [PTS(OI; )

+ 652‘@(5)”(1{5’*)/-
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for some constants A\, o, C' > 0. Using the interpolation (3.17) as in the proof of Proposi-
tion 3.6, we obtain

1d
—lgs@©ll7z < —w@+6)"gs©llzs — o ( S5IPGs ()17 + IPgs (& )H%g)

2dt
~ 12
+CE|S() Iy + CA+ )T T 2TGs ()72 (o)

for some constant C' > 0 (independent of £ and ). We can then conclude exactly as in the
proof of Proposition 3.6. U

3.4. Decay estimates: Hard potentials in the whole space. In this subsection we
shall always assume v + 2s > 0 and €, = R3, and we shall obtain decay estimates for
the semigroup U® (see Proposition 3.8) as well as its integral in time against a source
J3US(t — 7)S(7) dr (see Proposition 3.9). We recall that given any real number w € R we
denote py, : t — (1 4 t)%.

Proposition 3.8. Let £ > 0, p € (3/2,00] and 0 < ¥ < 3(1 — %) Let fo € L%L%((v)z),
then

~ —~ f ~ ~
00Ol + 2 I00P 0" O Rz o) + oo 5y PO

S Hﬁ)HLéL%((vV) +1102() fo 2o L2 ((0ye)-

LALZI3((0)?)

Proof. Let f(t) = U%(t)fo for all ¢ > 0 which satisfies (3.9), so that f(t,&) = U=(,€)f(€)
satisfies (3.10) for all ¢ € R3. Using Proposition 3.1 we have, for all ¢ > 0 and some \g > 0,

YOI ey < A <1HPLf(ﬂ| KQHPf(W2>
2dt L2((0)6) = 770\ 22 HY™ ((v)t (€)2 L2 |

and we already observe that, using || - || = ey > [ {v)7/2+s . Iz2(wyey = I 22 (wyey and
€ (0, 1],
1 n ¢ £
IR @z ey + IR A 2 EL @M 0

where we have used that H‘J?(f)ng((v)f) is equivalent to || f(¢ )M 22 ((wyey independently of €
and €. Therefore it follows

(3 19)
) 62w reniz, o (LA, o 16 )
ROz e < IR0 = { ZIP FO o + gz IPFONE ).

for some constants A, > 0. We now split our analysis into two cases: high frequencies

|€] > 1 and low frequencies |£] < 1.

For high frequencies |{| > 1 we remark that % > %, hence we obtain

1d N
2dt1|g|>1\|!f( Wiz (wyey < =ALg1lFEN 2 (uye)

o

1 ~
— 2 ( 1‘§|>1HP ( )HHS* ((v)®) + 1|§>1HPf<§)H%%> :

Arguing as in the proof of Proposition 3.4 we hence deduce

_ 1 " -
Ligsilleaf(E)llzeorzwyey + gllglzlHeAPLf(f)HLfHﬁ’*((uV) + LigsalleaP £ (E)ll 2z
S L1l o)l L2 wyoy-

We now investigate the case of low frequencies |{| < 1. We denote by p’ the conjugate
exponent of p, that is 1/p+ 1/p’ = 1 with the convention p’ =1 if p = oo, and consider a
real number r verifying 1+ p’/3 < r < 14 1/(29), which we observe is possible thanks

(3.20)
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to the conditions on p and . Remarking that |£> < 2|¢|?/(€)? if |£] < 1, by Young’s
inequality we get: for any ¢ > 0 there is Cs > 0 such that, for all |{| < 1 and ¢ > 0, we have
€7
(€)?

We therefore obtain, coming back to (3.19) and choosing § > 0 appropriately,

1d 1 £|? ~
1l OBy < o ( g P ()HHS*<>e)+1|§<1<|€’>2HPf(§)\%g>

— 91+ ) L all FO N2 ey
11 __2 =
+C(14t) g el FOT2 e

for some constant C' > 0. Multiplying both sides by (1 + )%V gives

d
331 {0+ 07 Ll FO Nz o )

(3.21) 1< 6(1+8) 2 + C5(1 4 ) 71 [¢| .

1 S
(140 ( LgalPA RO ) + 1|g|<1<’§>2||Pf(§)||%g>

+O(1+ 1)1 \§|_ml\g|<1Hf(ﬁ)“%g(@)l)-

Integrating in time implies, for all ¢ > 0,
. 1t .
(14 t)2‘91|£\<1Hf(t7f)H%g((v)é) + ;2/0 (1+ 7-)2191‘£|<1\|Pi—f(7-,f)HiIs,*(@V) dr

t 29 [ 2
+ [ Qg PR o)1 ar

~ 2~
< 110122 0yey + Lie<r I P TN FE 12 13 e
where we have used that (1 + )17 s integrable since r < 1+ 1/(29). We now take

the supremum in time and finally the square-root of the resulting estimate, which gives

(3.22)
€]

3] L2132

~ 1~
S gl fo(O)ll 2 wyey + Lig<a l€l T ) oo 2wyt -

Gathering the estimate for high frequencies (3.20) together with the one for low frequen-
cies (3.22), it follows

Pf(¢)

~ 1
Ligi<1llpof ()l Loz yey + = 1\§|<1HP0P (e Ol z2ms=(wyey + Ligi<1 ||Po

€]
1)

~ 1~
S Ao L2 wyey + Lig<al€l T IFE oo 2 ()

Taking the Lé norm above, we use Holder’s inequality to obtain

ZPF(E)

-~ 1 -~
b0 F(@ sz s + HIpoP FE zme e + oo
e £2r3

/

p
/ Ligj<1l€l = = fe N izgeorz(wyey d€ S (/ 1\£|<1|§|7ﬁ d5> ||f||L§L;><>Lg((u>f)

S HfHLZE’LtOOL%((’UV)’

€
Py <£>Pﬂ

S ”fOHLéL% wyty T ||f”L§L;>°Lg(<v)f)a

since r > 1+ p/3, which implies

Ipa 1z rze 22wy prﬂP Alpzzms ey + ’
L{L7L3

and concludes the proof. O
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Proposition 3.9. Let { > 0, p € (3/2,00] and 0 < 9 < 3(1 — ;1)) Let S = S(t, z,v) verify

PS =0 and py(v)’S e LiLi(Hy*)', and denote
¢
gs(t)y= [ U(t—7)S(7)dr.
0

Assume that gs € LgLf"L%((v}é), then

) 1 I [qe
1PoGslz:ree ra(qwyey + ZIPoP~GsllLirz (o) + ‘ pa@Pgs

LILIL3
‘G ~
S ellpo () Stz gy + 19sllzrse 2wy -
Proof. Recalling that gg satisfies (3.12), we can argue as for obtaining (3.19) to get

1d e _ le?
2 g 195z e < ~22alls Ol s — 0 <2\Pl 35(€) gy + 1gy2 1P ()||%g>

T O (0) SO g5y

for some constants \,o,C' > 0. By separating the cases of high and low frequencies, we
can conclude exactly as in the proof of Proposition 3.8. U

3.5. Decay estimates: Soft potentials in the whole space. In this subsection we
shall always assume v + 2s < 0 and €, = R3, and we shall obtain decay estimates for
the semigroup U® (see Proposition 3.10) as well as its integral in time against a source
J3US(t — 7)S(7) dr (see Proposition 3.11). We recall that given any real number w € R
we denote p,, : t — (1 +1)%.

Proposition 3.10. Let p € (3/2,00] and 0 <9 < 5(1 — ). Let fo € F; ' (LELZ((v)) N
L?L%) with £ > 9|y + 2s|, then we have

€]

Do
(€ L2

S HfOHL%L% + HUE(')fOHLéL;’OL%(@)Z) + HUE(')fOHLth"OL%'

P(U*(-) fo)

000° OV follzzsgezs + ZIoaP 0O oll e + \

Proof. Arguing as in the proof of Proposition 3.8, denoting f(t) = U®(t) fo and using that

|- 1 froe (qoyey = || (v)7/2Fs . |22 ((vy), we first obtain

NN
[GH

1 2
o (EQHPLJ% Ol + (P >\%g>,

fee 7z < =AY PLREIT: - Az PO,

2 dt
(3.23)

for some positive constants A\, > 0. We now split the analysis into high frequencies and

low frequencies.

For high frequencies |{| > 1 we observe that % > %, which yields

1d e ~
5Ll F©I3; < Mol )2 PF©I; - NMPFEOIZ

1 ] i
o (U PO + 11 IPTO13)
< ALgsall(v) " F(©) 12

1 ~ ~
— o (et IPEFO e + LepalPFEIE: ).
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for some other constants A, > 0. Thanks to the interpolation inequality (3.17) of the
proof of Proposition 3.6, we hence deduce

1d - 7
5 e IF@lEs < —w(+ 6 g IF 17
1
0< S1ig>1 || P+ (nmm+lk>ﬁPf(w%)

R P 2 -

for any ¥ < w < ﬁ and some constant C' > 0. With this inequality we can thus argue
2w—1—

FO(+t)”

2¢
as in the proof of Proposition 3.6, which gives, recalling that (1+1¢) 251 is integrable

since 0 < w < ﬁ,

. 1 . .
Lgslpw f(llzeere + g1|§\21prPLf(g)HL%HS’* + L1 lpoPF (€l 212

N 1|§|21H]?0(§)”L% + 1I£\21Hf(§)HL§°L5(<v)Z)-

We now turn our attention to the low frequencies case || < 1 . First of all, from (3.23),
we use the interpolation inequality (3.17) of the proof of Proposition 3.6 to deduce
Ld 2 < L+ O Lt PRI — Mg D P2
5@ LgallF©II7: < —w(+8) " 1galPHFET: - |5|<1WH FOIZ:

2
- <lls|<1HP <>HHH+15|<1<’5'> e >u%g)

(3.24)

+ O+ 07 T L [P F©) 2 oy

for any ¥ < w < ﬁ and some constant C' > 0. As in the proof of Proposition 3.8,

we denote by p’ the conjugate exponent of p, and consider a real number r verifying
1+p'/3 <r<141/(29). Using inequality (3.21) we hence deduce

1d ~
oY LgallF @I < =01+ gl )72

2 o~
- (1 Lt IP O + L g |>2|!Pf(§)|!%g>

12t ry
+C(L+1) T L [P F(O72 1)
11 __2 7
O+ ) R g [P FE) I,
for some constant C' > 0. Multiplying both sides by (1 + )%V gives

1d
2dt

~ 2
{(1+t>”1.g|<1uf<§m%g}é—a<1+t>”(11g|<1uP FOIe- + Liger o IPFE >u%g>

+ O+ T L BT 12
L O+ )X g L < IPF()135-

Integrating in time implies, for all ¢ > 0,

~ 1 t ~
1+ 07 Ll FE O + 5 [ 0+ 07 1P )l dr

DR i
+ [0+ P IPRr o1 ar

~ 2~
< Ll Fo©12 + LI FE) 2o 2 o+ i< |67 PO e 12

29—1— 29—-1—
) )

2¢
where we have used that (1 + ¢ h+2s and (1 4t 1 are integrable since
0<id<w< ﬁ and 7 < 1+ 1/(29), respectively. We can now take the supremum in



22 C. CAO AND K. CARRAPATOSO

time and then the square-root of the resulting estimate, which gives

EPA
Po f(6)
S 1|§|<1||]?0(f)||Lg + 1|§\<1Hf(f)”L§°Lg(<v)f) + 1\§|<1‘£|_$Hf(£)HL§°L%-

Gathering the estimate for high frequencies (3.24) together with the one for low frequen-
cies (3.25) and observing that ¥ < w, it follows

R 1 =
Lg<llpo f()llzzerz + Lig<allpoP = F()l 2a= + Liga

(3.25) LYL3

90 F©llcz-z(pey + = P Fle >HL2HH(<>)+HW<'§>PJ?<£>

LiL3
S ”]?O(f)HL% + Hf(f)”LgOLg((v)é) + 1\§|<1|§|7ﬁ||f(5)“L;’QL%-

Taking the L% norm above, we use Hoélder’s inequality to control the last term in the
right-hand side as in the proof of Proposition 3.8, to obtain

__1 -~ N
/R3 Lig<al€l TN F (Ol oo 2 (qpey A€ S 1Al 2z Lge L2y

since r > 1+ p’/3, which implies

pﬁmPf‘

S HfOHL1L2 + Hf”LlLOOL2( )+ HfHLpLOOL2(< y0)

||p19f||L1L°°L2(( *||P19P fHLlLQH “(wyt) T ‘
L1213

and concludes the proof. ]

Proposition 3.11. Let p € (3/2,00] and 0 < ¥ < 3(1 — %) Let S = S(t,z,v) verify
PS =0 and pyS € L%L%(Hﬁ’*)’, and denote

— /t Us(t —1)S(r)dr.
0

Assume that gs € f;l(L%LQ((UV) N LpL2) with ¢ > Oy + 2s|, then

€l o
Pﬂ<£> gs

Ibodslzyszess + ZIpoP sligrzne +
L¢L7L3

S EHPﬁSHL;Lf(H;’*)/ + H?SHL%L?L%((U)Z) + ||§S||L§L50Lg~

Proof. Recalling that gg satisfies (3.12), we can argue as for obtaining (3.23) to get

1d splo N
5 qls©OlF: < ~NwP 2 P51 - A 1P
o2 Plgs(¢ e P 2 Ce?||S (¢
| =l Ol + © IPGs(©)I72 | + CISEF g5y
for some constants \,o,C > 0. By separating the cases of high and low frequencies, we
can conclude exactly as in the proof of Proposition 3.10. g

4. WELL-POSEDNESS AND REGULARIZATION FOR THE RESCALED BOLTZMANN EQUATION
Consider the equation (1.9) that we rewrite here
1 1
{8th — (L= v Va)f*+ T, F9)
fizo =15

We shall consider mild solutions of (1.9), that is, we shall prove the well-posedness of a
solution f€ to (1.9) in Duhamel’s form

(@) O =005+ L [ U= nE o, ) ar
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Taking the Fourier transform in space of (1.9), we have
N N 1~
O0uf7 () = A°(€) /() + _T'(f7, [)(E)
F(€)i=0 = f5(9),

and by Duhamel’s formula

43 FGO=00OFO+1 [ 00— r e, F)©dr

(4.2)

4.1. Nonlinear estimates. We start by recalling some well-known trilinear estimates on
the collision operator I' established in [44, 1, 5]. We start with estimates without velocity
weight. From [44, 5], for the hard potentials case v + 2s > 0 there holds

(4.4) ‘( (fs9), 02| S N2 llgl g (1] o=

Moreover from [1], for the soft potentials case v + 2s < 0 one has
(T (£.9), B2

(45) < (1077 Fllz gl + 171 1Y+ gl ) g

+ min {|[(0) /2 [ 12 Il 22 | £zl (0) 2+ gl 2 } 1Pl e
From these estimates we already obtain

ITCf ) rgey = | sup  (I'(f,9),®) 12

IHZ’*f
(4.6) SN0 Fligllall g + 111160}~ 0= gllg
- min {[0) "2 gl iz 1l )72 g2}
where we denote a— = —min(—a,0), which holds for both hard and soft potentials.

For the soft potentials case, we shall also need estimates when adding velocity weight
(v)!. From (4.5) together with the commutator estimate of [1, Proposition 3.13], there
holds

’(F(ﬂ 9), 1) 12wy
(4.7) S (110725 Fllzallg s oyey + 1 L= 10) 72 gl aqupey ) Il (copey
+ min { [[(0)/24* Fll 2l 2z ey 1 12211 0) 722Gl sz iy 1B s oy

Therefore we also deduce

1) T(f, 9l grsey = sup (£, 9), ®) r2(w)0)

||¢HH57*(<U>Z)§1
(4.8) S 125 Fll 2 llgl o ey + 1 as= 1) 2 gl L2 ey

- min {10725 L2 9l a1 1Lz 10) g L2y

for the soft potentials case.
Thanks to (4.6) we deduce our main nonlinear estimate without weight.

Lemma 4.1. Let p € [1,00|. For any smooth enough functions f,g there holds
|ﬁu,mﬁﬁ sy STy + Ty + min{Ts, Ty}
where
' = min{”<U>_(7/2+s)7f”L§L§°L%”a”LéLfHﬁ’*v ||<U>_(’Y/2+8)7ﬂ|L2’LfL%Ha”Lth"oHﬁ’*a

||<U>7(7/2+S)_f||LéLt°°L%||§||L§Lfo,’*a ||<U>7(7/2+S)_f||L%LEL%||§||L§L§°H§’*}7
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Iy :min{”fHLé’Lfonj’*H( v)” (/2te)- 9”L1L2L2=||f”LpL2H”H< ) (/2te)- g”LlLO"L2a

<U>—('y/2+s —(v/2+s)

Hf”LéLfoHﬁ’* 79||L§L5L37 HfHLéLfHﬁ’* [1{v) 79||L‘§L§°L%}a

I's = min{||<v>_(7/2+5 f||LPL°°L2 ||9||L1L2L2a [{w)~0/2 42~ f||LPL2L2 HgHLlL‘X’L?a
[{w)~0/2+) _f”L%LfoL%HgHLé’LfL%v ||<v>7(7/2+5)_f||L%L%L%HgHLZL;X’L%}v
and
I'y = min {H]?”LPLOOLQ [{w)~0/2+) g||L1L2L2a ||f||LpL2L2 [{v)~0/2+) §||L§L§°Lg,
HfHLlLoomH( )" (1729~ QHLgLngv HfHLéLfL%H<U>_(’y/2+s)_§HL§L§°L%}'

Proof. Using (4.6) we write
1/2

{100 B0, 90)@ ey dt] ST+ o min{ T, 1)

with
2 1/2
11:{/0 (/,||<> O (1, = m) | 13, n)|H5*dn> dt} |
9 1/2
fz={ / (/Q (8 = )l )07 77)HL2dn> dt} |
2 1/2
fs={ / (/ O f 6~ n)la g, n)IIden> dt} |
and

1/2

2
" {/o (/Q I£(8.€ = llz2 )07t )5z dn> dt}

We now investigate the term 7;. Thanks to Minkowski and Hoélder inequalities we then
obtain

o N 1/2
g (/0 I{0h 07249 Ft €~ m)Ballat e dt)

S / 29 F (=)o [9n) | 2112 A

Taking the Lé’ norm in above estimate and using Young’s inequality for convolution we
first obtain

L 3 ”<U>_(7/2+s)7f||L§L§°L%”:q\”LéLfo,’* and I < [|(v)” (1/2+9)- f||L1L°¢L2||9HLPL2H5*

Arguing exactly as above but exchanging the role of f and g when performing Holder’s
inequality, we also obtain

L < ”<U>_(7/2+S)7f||L7gLngHZJ\HL%LfoHi’* and I S [|{v > (1/2%s)- f||L1L2L2||9||LPLOOH“

that is 1 < T'y.
The estimates for the other terms I, Is and I can be obtained exactly as for I, so we
omit it. ]

Arguing exactly as in the proof of Lemma 4.1 but using the weighted estimate (4.8), we
also obtain the main weighted nonlinear estimate for soft potentials below, the proof of
which we omit for simplicity.
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Lemma 4.2. Let £ >0, v+ 2s < 0 and p € [1,00|. For any smooth enough functions f,g
there holds

1) T, )z zzqazy S T1+ Tz + min {Ty, T |

where

By = win {110)2* Pl e 1 101222y ||<v>7/2+5f||LngLg||§||L;Lm*<<y>e>,

[{v >’Y/2+SfHL1L°°L2 Hg”LpLQHS * ||< >7/2+Sf”L%L§L%||§HL§L;>°H5’*(<U>‘Z)}’
= . N 245~ 245~
I’y = min {HfHLgLfCH,f’*W >7/ e HL1L2L2 HfHLpL2HS * H(UW/ +89HL%L§°L%((U>Z)’
1Al Lo rrg= Il v v/ 2+SA||L”L2L2 oy [IF] lzizzms Jw)?! 2+s§||LngoLg(<v>f>}’
-~ . 2 2 ~
I's = mln{”< ) v/ +SfHLpL°°L2HgHL1L2L2 ||< ) v/ +sfHLZLfL%”g”LéL;’OL%((v)‘Z)y
[I{v >”/2“fHL1LooL2IIQIILpLsz oy, [[{v >7/2+Sf||LngLg||§||LngoLg(<v>e)},
and
I'y = min {HfHLth‘xL%W >7/2+SAHL1L2L2( ||f”LPL2L2 [{v >’Y/2+5A”L1L°°L2(( Y4)
HfHLéLt"OL%W )WHSAHL?’L?L2 ||f||L1L2L2||< >7/2+8A||LPL°°L2(( )e )}-

4.2. Proof of Theorem 2.1—(1). We consider the torus case 2, = T3.

4.2.1. Global existence. Let £ = 0 in the hard potentials case v+ 2s > 0, and £ > 0 in the
soft potentials case v+ 2s < 0. We define the space

— {J € FrMLLLPLA(W)) N LELRH (0))) | £ satisties (L.14), [f]lo- < oo}
with
1fll2 = ||f||L1L°°L2(( *||P f||L1L2HS*( o) + HPf||L1L2L2
Let f§5 € F, (Lng((@ )) verify
||f5||L§L3 < o,

and consider the map ® : 2" — 27, f¢ — ®[f¢] defined by, for all t >0 ,

1t
(4.9) [fF](t) =U(t)f5 + g/ U(t = 7)T(f*(7), f°(7)) d7

0

thus, for all ¢ € Z3,

N N N 1t~ N
(4.10) L)) = U () f5 (&) + 5/0 U=(t =7, L (f*(7), f°(7))(&) dT.
Thanks to Proposition 3.2 we deduce, for some constant Cy > 0 independent of €, that
105l < Coll Flpaze:

Moreover thanks to Proposition 3.3 and the fact that PI'(f¢, f¢) = 0 from (1.12), we get,
for some constant C; > 0 independent of ¢,

[ o - e e ar
0 Z

< C|[{w)'T(f°, fE)HLéLf(Hf,‘*)’
< CleEHLéLfoL%”fEHLéLin’*((v)‘f)
< Gl e

where we have used Lemma 4.1 or Lemma 4.2 in the second line together with || (v) ~(7/2+5)- Pz S
min{||¢[|z2, ¢l s+ }. Gathering previous estimates yields

(4.11) I[N < Coll fsllnaes + Call FI1%-
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Moreover for f¢, g° € 2 we first observe that
g

B0 — 0l 10 = L [ U - ) T () - Tl ()77

Introducing the symmetrized version I'syy, of I', namely

(112) Tl ) = 5T(7,0) + 379, ),

we remark that, arguing as from obtaining the collision invariants in (1.5), we have that
Lsym(f, g) also verifies (1.12), which means PT'sym(f, g) = 0. We therefore obtain

B0~ 2710 = [ U Dy (7°(0). S77) = () e

1 [0 = nTamle" (), £77) = (7))

with Plgym(f, f© — ¢°) = 0 and PI'sym (9%, f — ¢°) = 0. Hence Proposition 3.3 and
Lemma 4.1 or Lemma 4.2 yields

1R[] = @lg7]ll 2
S )T, = I Lirz ey + (o) T(f* — g7, FMliez gy
+[[(v) T (o, f° — I eiezcgmy + 1) T(f* = o, I eirz ey

S HfSHLlLOOLQ )”f -9 HLlLQHS*( )+ 7% - o HL1L°°L2 Z)HfEHLlLQHs’*((v)‘v’)

(4.13)

+ llg° HL1L°°L2 Hf -9 HLlLQHs*( )+ 17— g HLlL"OL2 yollg® HLlLQHS*(< ye)
thus we get, for some constant C'y > 0 independent of ¢,
(4.14) 12[f°] = @[g°]ll 2 < Crlllf N2 + 9"l 21" — g%l

As a consequence of estimates (4.11)—(4.14) we can construct a global solution f¢ € 2
to the equation (4.1) if 79 > 0 is small enough. Indeed let By (n) ={f € Z | |fll2 < n}
for 7 > 0 be the closed ball in 2" of radius 7. Choose

1
= 2C d < ,
n 070 an n < 8CoCy

and observe that 1y does not depend on . Then for any f € By (n) we have from (4.11)
that

@[l 2 < 2Com0 =,
and for any f¢, ¢° € By (n) we have from (4.14) that

1
12[f*] = @[g°]llr < ACoCrmollf* = g°ll.2- = SIIF° = ol

Thus ® : By (n) — Bg(n) is a contraction and therefore there is a unique f € By (n)
such that ®[f¢] = f¢, which is then a solution to (4.1). This completes the proof of global
existence in Theorem 2.1-(1) together with estimate (2.10).

4.2.2. Uniqueness. Consider two solutions f¢, ¢° € .7:;1(L%LfOL?)(<v>€)ﬂLéLt2H5’*(<v>€)) to
(4.1) associated to the same initial data f§ € f;l(LéL%(@V)) satisfying ”f(%HL%L%((v)Z) <o
with 19 > 0 small enough and

If ”L1L°°L2( )+ I/ ||L1L2H5*(< S ”fo||L1L2 (v)0)

I HL%L?"LZ( oy +[1g° ||L1L2H5*(< S Hf0||L1L2 (v))-
Arguing as in the existence proof above, we obtain

fe— ge”LéLf"L%((vV) +fe = gEHLéL?Hj’*((v)Z)

S (I sz ey + 197z arzoyey) (1F° = 0 iz ay + 17 = O liazzms (e ) -
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Using that ||f6HLéLtooL12)(<v>l) + ”genLéL?Hi’*((v)e) < 1o is small enough we conclude the proof

of uniqueness in Theorem 2.1—(1).

4.2.3. Decay for hard potentials. Let f€ be the solution to (4.1) constructed in Theorem 2.1—
(1) associated to the initial data f§, and let A > 0 be given by Proposition 3.2. Using
Proposition 3.4 and Proposition 3.5 we obtain

- 1 1= .
lexfllzizserz + gHeAP Flleizng + lexPfollrirzrs
S |’f5||LéL% + He)\r(faafe)”LgLf(HS’*)"
Thanks to Lemma 4.1 we have
[exl’(f<, fE)HLéLf(Hi’*)’ S HeAfEHL%L;’OLgHfEHLéLfHS’*v

therefore using that ||f5\|L%L%H5,* < HJ%HL%L% from the existence result in Theorem 2.1—(1),

we obtain
”e/\fa||LéLt°°L12, + é”eAPLJ}\EHL%LfHS’* + ||eAPf6||L§L§Lg
S HJ?S”LéL% + ||e>\.]?€||L%L§°L%HfEHLéLfo;'*
S H]%HL%L% + ”]%HL%L%He/\fE”L%LfoL%'

Since | f&|| L < 1o is small enough, the last term in the right-hand side can be absorbed

into the left-hand side, which thus concludes the proof of the decay estimate (2.11) in
Theorem 2.1—(1).

4.2.4. Decay for soft potentials. Let f¢ be the solution to (4.1) constructed in Theorem 2.1—

(1) associated to the initial data f§ with £ > 0, and let 0 < w < ﬁ.

Using Proposition 3.6 and Proposition 3.7 we obtain
. 1 L2 .
I ol Lirgers + ZIPoP ™ol Lirzmps + PPl L1z
< HfSHL%L% + HfEHL%Lf"L%((U)e) + ”pr(fgvfE)HLéLf(HS’*)’v
and from Lemma 4.1 we have
1P DO P pr ez gy S P folleisge 2l gz g

Using that ||fEHL%LtooL12}(<U>Z) + HJ?SHL%L%H?)* < ||.%‘|L%L%(<U>l) from the existence result in in
Theorem 2.1-(1), we deduce

_ 1 L= _
prfEHL%LgoLg + gHPwP fEHLéLfHS’* + prPfEHL%LfL%
Sfleiez ey + 1761 ez oy IPw Foll oo 2

Since ||]?§||L%L%(<v>e) < np is small enough, the last term in the right-hand side can be

absorbed into the left-hand side, which thus concludes the proof of the decay estimate (2.12)
in Theorem 2.1—(1).

4.3. Proof of Theorem 2.1—(2). We consider the whole space case {2, = R3.

4.3.1. Global existence. Let £ = 0 in the hard potentials case v+ 1s > 0, £ > 0 in the soft
potentials case v + 2s < 0. Recall that p € (3/2, 00] and define the space

@ = { f €F N LELE L)) N LELFHY™ ((0)) 0 LELE LA ((v)") N LELEHS™ ((0))) ’ Ifllsr < oo},
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with, recalling that || - || s+~ is defined in (2.8),

§
||f”€’?/ = ||f||L1LooL2(< 7”P f”L1L2H5* v)¢) + H | ’Pf

LILIL3

_ €l o
+ Hf”Lé’LtOOL'A’« yey *HP fHLPLQHS " ((v) H '
LgLng,

Let f§ € F '(LELy((0)") N LELE((v)")) verify
”J%HL%L%((U)Z + HJ?SHLng((v)f) < o,

and consider the map ® : & — % f — ®[f¢] given by (4.9), which in particular satisfies
(4.10) for all £ € R3.
Thanks to Proposition 3.2 we deduce, for some constant Cy > 0 independent of ¢, that

10O S5l < Co (175 Nz + 15522200 -
Moreover thanks to Proposition 3.3 and the fact that PT'(f¢, f¢) = 0 from (1.12), we get
t
- / Us(t —)D(f(7), f°(7))dr
0 v
S YT I nzazey + M TE F ez oasy

S (I Nwazee caqeyey + 1P N2z raqr ) ¥ gz upoy

where we have used Lemma 4.1 or Lemma 4.2 in the second line together with || (v)~(7/2+9)- Bz S

min{||¢[|zz, (|9l s+ }. We now observe that, splitting fe =PLfe +Pfe, on the one hand
we have

I/ ||L1L2H5*(( < |Ptfe HL1L2HS*( )yt P Je ||L1L2L2
On the other hand

HPJCEHLéLfL% N Hl|§\z1PfEHL§L§Lg + Hl|g\<1Pf€HL§L§Lg

S H1|g|21<‘gPJ?E + H1|g|<1|§|_1‘§|PJ?6

L2 3] Li2L?
g ~ —~
<| e Bpp|
rizrz 11 LPL2L2

where we have used Holder’s inequality in last line, using that p > 3/2 so that 1|§‘<1|§ |7l e

L?. Putting together the two last estimates, we have

|y

€ o
@15) 1P lczczmee o < P Pl sz o H PJ

LLLZL? LYLZL3

We hence deduce that there is some constant C'; > 0, independent of ¢, such that
t
~| [ v = nreE, ey dr
0 Zx
< O (1N pgens + 1PNz eerz)

H €l

P

(\P f lzizzm* 4‘H<’§|PJ?6

LLLZL3 LgLfL%)
Therefore, gathering previous estimates, we obtain

(4.16) 120/l < Co (175 N azaqye + 15 lzzrz o) + Call 215
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Moreover, for f¢,¢° € % we first observe that ®[f¢] — ®[¢°] satisfies (4.13). Therefore
we obtain arguing as above, thanks to Proposition 3.3 together with PLgym (¢, f¢ — ¢°),
Lemma 4.1 and Lemma 4.2, that

(t - T)Fsym(fa(’r)? fa(T) - 98(7_)) dr pe
S )T (e, £2 - I LyLz gy + (W) T(f°, £~ I zerz ey
+[(W)T(f° - o, fE)HLéLf(Hﬁ’*)/ +I[()T(f° - g7, fE)HL’gLf(HS’*)’

Sz 2o 17 = G erz iz oy + 1 e pe 2o 17 = 9 etz ()0

+ £ _gaHLéL;’OLZ é)”f HL1L2H”( )+ I1£= - HLPLO"LQ Hf ”LILQHS*(( Y0y

and similarly
t
S| Ut (@), 550 - )y ar|
S H(@Zf(gaa ff= ga)HL%Lf(H;f’*)’ + H<’U>€f‘(gaa o= QE)HLgL%(Hi**)’

+ )T = 6% 0 nznzqsey + 10T = 0% 0 lzraqusey

< g ||1:1L°°L2 Hf€ -9 ||L1L2H5 *(wye) T 1 ||LPL°°L2( ||f€ - ”L1L2H5’*(<v>f)
+ff-3 HL%L;’OLQ yoyllg® HLlLQHS *(wye) T 175 - HLPLOOL2 vy llg° ||L1L2H5 NOLE
Together with (4.15) for the terms in || - ”L%LfHﬁ’*((v)Z)? this implies that, for some constant
C1 > 0 independent of ¢,
(4.17) 12[f°] = @[g°]llo < Cr(lfllo + llglla) | f = glle-

As a consequence of estimates (4.16)—(4.17) we can construct a global solution f¢ € % to
the equation (4.1) if 9 > 0 is small enough by arguing as in Section 4.2.1. This completes
the proof of global existence in Theorem 2.1-(2) together with estimate (2.13).

4.3.2. Uniqueness. Using the above estimates, we can argue as in Section 4.2.2.

4.3.3. Decay for hard potentials. Let f¢ be the solution to (4. 1) constructed in Theorem 2.1-
(2) associated to the initial data f§, and let 0 < 9 < 3(1 — f) Arguing as above, using
Proposition 3.8 and Proposition 3.9 we obtain

ﬁp e
Po iy P

< ||f§||L§Lg + HfEHLngoLg + [[pa'(f7, f€)||L;Lf(H5’*)"

Thanks to Lemma 4.1 we have

N 1 N
IboFlrprzss + 2 I0oP* Fllyspme +
€ ¢ LILZL2

[pol"(f7, fE)HL%L?(Hﬁ’*)’ S Hpﬁfa”LéLfoL% Hf(SHL%LfHS’*y
and by (4.15) we have

~ ~ f ~
IFlsgsane S 1P Flligszme + |11

[ger

LLLZL3 LYL3L3
SWFsleaes + 1550z e

where we have used t}ie estimate gf Theorem 2.1-(2) in last line. Observing that we also

have [[f*llzpreerz S If5lleyez + /5]l Lz, it follows

polSl €]
3

S Wollpez + folieere + o follprpsers (1o llziee + 1o llzers ) -
e ¢ gt ¢ €

Pf:

0o Flizrs + SIooP Pl sz + \
L¢L7L3
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Since ||]%||L§L2 + ||]?§||L1£L2 < 1o is small enough, the last term in the right-hand side can be

absorbed into the left-hand side, which thus concludes the proof of the decay estimate (2.14)
in Theorem 2.1-(2).

4.3.4. Decay for soft potentials. Let 0 < ¥ < %( — 1%) Let f¢ be the solution to (4.1)
constructed in Theorem 2.1-(2) associated to the initial data f§ with ¢ > 9J|y+2s|. Arguing
as above, using Proposition 3.10 and Proposition 3.11 we obtain

polsl
(€

< Hf0”L1L2 + HfEHLlLOOL?( ) T 172 ||LPL<>OL2 + o (f7, E)”LéLf(Hj’*)"

For the nonlinear term above, we argue as in Section 4.3.3 so that
ngLfL%)

Pf¢

Hpﬂf HL1L°°L2 + —||p19P F ”LILQHS =+ ‘
L2132

oL P pr 2 gy

L €] 5 - o|d €l 5

N 1=
< ||P19f€HL§L§°Lg (’P fEHLéLin’* + ’

L1 L2L2

Therefore, using the estimate of Theorem 2.1-(2), we obtain

ﬁpfé

Py
() Li2r?

SISz + 15 ez + 1o S Nszeers (175 azacuey + 15 222z -

N 1 L=
0P lrpuss + HI0oP* Fllguznee +

Since ||]%||L2L%(<v>“) + ||%||L§L%(<U>e) < 1 is small enough, the last term in the right-hand
side can be absorbed into the left-hand side, which thus concludes the proof of the decay
estimate (2.15) in Theorem 2.1—(2).

5. WELL-POSEDNESS FOR THE NAVIER-STOKES-FOURIER SYSTEM

We start by considering the incompressible Navier-Stokes equation, that is, the first
equation in (1.17). We denote by V the semigroup associated to the operator 11 A,, and
we also denote, for all t > 0 and £ € €,

V(t,€) = Fo(V()F,H)(€) = e kP,

We shall obtain below boundedness and integrated-in-time regularization estimates for V'
as well as for its integral in time against a source [y V(¢ — 7)S(7)dr.

Proposition 5.1. Let p € [1,00]. Let ug € .F;l(Lg) and suppose moreover that ug is
mean-free in the torus case Q, = T3. Then

IV ()oll 2z + IIEIV (ol 2z S Nl e,

and moreover V (t)ug also is mean-free for all t > 0 in the torus case (that is it satisfies

(1.19)).

Remark 5.1. Observe that, in the torus case Q, = T?, one can replace |¢|V (-)zp in above
estimate by (£)V (-)ug since V (t)ug is mean-free.

Proof. Let u(t) = V(t)up, which satisfies
Ou = —v1Azu,  up—g = Uo.

We already observe that, in the torus case, the solution u(t) is also mean-free, that is
satisfies (1.19). For all £ € Qé we thus have

et €) = —mléf*a(t,€),  u(€)y=o = w(€),
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thus for any ¢ > 0 we have
t
At P + [ 1P O dr S (O

Taking the supremum in time and then taking the square-root of previous estimate yields

[a(€) g + [l1€[a(©)l 2 < luo(€)],

and we conclude the proof by taking the ng norm. O

Proposition 5.2. Suppose p € [1,00]. Let S = S(t,&) satisfies (£>*1§ S LthQ and (1.19)
in the torus case Q, = T3, and |£|_1§ € ngLt2 in the whole space case Q, = R3. Denote

= /t V(t—7)S(r)dr.
0

||ﬁSHL§L;>° + H<§>QSHL§L§ S H<§>715HL§L§‘

Then in the torus case we have

and in the whole space case
~ ~ 14
lasllzzse + NElaslzzce < 118Nz
Proof. We first observe that ug satisfies
Orus + 11Azus =S,  ugj—o = 0.

We only prove the whole space case, the case of the torus being similar by observing that
ug is mean-free, that is verifies (1.19).
For all £ € R3 and all ¢t > 0 we have

Oetis(t,€) +m[el*as(t,€) = 8(t,€),  us(&)—y = 0.

We can compute

W)

1 ~
O [ (8, O + m e las (€)1 < (
which implies, for all ¢ > 0,
s OF + [ lellas(r o ar 5 [ s el ar

Taking the supremum in time, then taking the square-root of the estimate, and taking the
Lf norm, the proof is thus finished. O

(£),us(€)),

We now obtain bilinear estimates for the operator Qg defined in (1.16).

Lemma 5.3. Let p € [1,00]. Let u,v € F;'(LEL® N L{LY®), then

(5.1 el s (o, w)lzzaz < el zpcalll e
and also
(52) e~ @ns (.l cpz < Noll ol ooz

Proof. From the definition of Qyg, we first observe that for all £ € Qé and j € {1,2,3} we

have
Qns (v, u)(€) = —Zlﬁk{ |£’2 ngﬁlf 5)}

-3 Z i€ {fm(uﬂ'v TP Z@&f u'v )(5)}
= oG
We obtain
Qs S el [, [Pmlate =)l an
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thus by Minkowski’s inequality and then Hoélder’s inequality

1/2
e Qs @z 5 [, ([ 106 Pa €~ miar)
S |, 100lszlae = mlaz=

We then conclude the proof of (5.1) by taking the Lg norm above and applying Young’s
convolution inequality. The proof of (5.2) can be obtained in a similar way, by exchanging
the role of v and v when applying Hélder’s inequality with respect to the time variable. [

5.1. Global existence in the torus Q, = T3. We shall construct mild solutions to the
first equation in (1.17), namely

t

(5.3) u(t) = V(t)yuo + /0 V(t — 7)Qus (u(r), u(r)) dr.
We define the space

X = {u € f;l(LéLfo N L%((f))L?) | u satisfies (1.19),

with
[l := Nall Ly rpe + 1K€)all 112
Let ug € F;l(Lg) be mean-free and
[0l < m.

Consider the map ¢ : 2" — 27, u — ®[u| defined by, for all t >0,

(5.4) Oul(t) = V(t)uo + /Ot V(t —7)Qns(u(r), u(r)) dr.

thus, for all £ € Z3,

65) Bl =T + [ V(- mO@us(ulr),ul(r)(O) dr
For the first term we have from Proposition 5.1 that

IV (t,€)T0 ()] 2 < COH%HL;a

and by Proposition 5.2 we have

[ 7 - ©@xstu(r), utr)(e) dr

< el Qs ) 122
< Nalgoz Il oo

< g2l 1

Z

2
S lull%,
where we have used Lemma 5.3. Thus we obtain

|®[ulll 2 < Colltiolly + Callul%-

Moreover for u,v € 2 we can also compute, using again Proposition 5.2 and Lemma 5.3,
that

| 70— 00xs(— o) o()© ar "Vt~ 7 9@us(ulr), (u = 0) () dr

< Nl Qs — v, 0) 1322 + 1617 Os, w = ) 122

Sl =0l ol Liee + il pyczll@ =0l Ly e

Z

Therefore there is C7 > 0 such that
[@[u] — @[v]ll2 < Ci(llullz + [[v][2)llu— vl
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Gathering the two inequalities and arguing as in Sections 4.2.1 and 4.2.2, we can construct
a global unique solution u € 2" to the equation (5.3) if 71 > 0 is small enough, which
moreover satisfies

I

2 5 ol

Once u have been constructed, we can then argue in a similar and even simpler way in
order to construct a global unique mild solution € for the second equations in (1.17) if
71 > 0 is small enough, namely

0(t) =V (t)0 + /Ot V(t—71)[—dive(u(r)0())]dT,

where V denotes the semigroup associated to the operator vsA,, and which satisfies
moreover

10112~ < Mlaoll g + [16oll 1

We finally obtain the solution p by using the last equation in (1.17) and observing that

~

we consider mean-free solutions, so that p(¢,0) = 6(¢,0) = 0. This completes the proof of
Theorem 2.2—(1).

5.2. Global existence in the whole space (), = R?. Similarly as before we define the
space, recalling that p € (3/2, +o0],

@ = {u e F (LELE 0 LH(ENLY) N Fy H(LELE N IR(ENLY) | flully < oo},
with
ullg = ||aHL§L;>° + ”|§W”L§L§ + ”aHLg’L;” + H’f‘aHLgLf
Let ug € f;l(Lg N Lg) satisfy
ol g + ol < m,

and consider the map ® : % — % u +— ®[u| defined by (5.4), in particular (5.5) is verified
for all ¢ € R3.
For the first term in (5.5) we have from Proposition 5.1 that

IV (£, €)a0(€)llo < Collol|y + 1ol 12).

Furthermore, by Proposition 5.2 we have

|[ 76— axs(utr,utr)© ar

where we have used Lemma 5.3. We now observe that

” S |||£’_1QNS(U7U)HLéLf + Hlfl_lQNs(u,U)lngLg

S lallprzz (1l prpee + Nl zopge ) -
el el gl

”aHLéLf = H1\§|2117||L§L3 + ||1|§\<177HLéL§7
and for the first term we easily have
”1|€|2117HL§L§ S HKWHL%L%
For the second term we use Hoélder’s inequality to obtain
gtz < H1|§|<1|§’71HL§’H1|§\<1|€WHL§Lf S el zz s

where we have used that [|1¢<1[§|7[|,,» < oo since p > 3/2. Therefore we get

I ,p
¢

(5.6) Il 2222 < NIElallzaze + Nelalzs.

Gathering previous estimates, we have hence obtained

1®[ullla < Co (Iolly + ITollzz) + Crllully-
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Moreover for u,v € % we can also compute, using again Proposition 5.2 and Lemma 5.3,
that

|[ 76 -ro@ns(—omvmn@ar| +| [ 76— o, (- e ar
< 1€ Ons ot — v,0) 2z + 1€ Qs — )l

+ €1 Qns(w — v, )l sz + 111817 @ns (u,w = )l

S - 77HL§L§°H77HL§L$ + HaHL%Lf”a - 6”L§L§° +[lu— 6||L§L,?°H77HL§L§ + HaHLgLf”a - 77HL§L§°

Z

S (Nallzyez + 19l ) (18 = 8l pge + 1 =Bl oz )
Using inequality (5.6) we therefore get, for some constant Cy > 0,

[@fu] = @[v]llo < Cr(lully + lvllz) lu—vlla-

Gathering these two inequalities together, the proof of Theorem 2.2—(2) is completed by
arguing as in Section 5.1 above.

6. HYDRODYNAMIC LIMIT

Recalling that the semigroup U€ is defined in (3.8), and also U° in (3.7), we also define,
for all £t > 0,

(6.1) W90 = £ [ U= )T (£ (1), 9(r)

as well as its Fourier transform in space, for all £ € Q,

(62) 1,016 = - [ 0%~ O am(F7), 9O
where we recall that I'sym (f, ¢) is the symmetrized version of I'(f, g) defined in (4.12).

6.1. Estimates on U°. We denote that 0 < x < 1is a fixed compactly supported function
of By equal to one on Bi1, where Bpg is the ball with radius R centered at zero.
2

Arguing as in [13, 39] but using the spectral estimates of [75, 76] for the non-cutoff
Boltzmann equation, we then have:

Lemma 6.1. There exist k > 0 such that one can write
ZUa t) + U (t),
with . .
U5 (t,€) = Uj( 5,26, U (.8 = UF(5,9),

where we have the following properties:
(1) For1 <j <4,

0,(t.€) = xS @ py e
with A\ satisfying
Xj(€) = ia(€) = Bilél* +;(1€]),

with
a1 >0, <0, ag=as=0, f;>0,
and
v (€)= O(EP), as € =0, (&) <BlEfP/2, Vg <,
as well as

Pi(&) = P (&) + [E1P} () + €7 PF(©),

with P' bounded linear operators on L2 with operator norms uniformly bounded for |£] < k.
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(2) We also have that the orthogonal projector P onto Ker L satisfies

4
P=> PJO(%)
j=1

Moreover Pjo(é—'), le(%l) and sz(g) are bounded from L? to L2((v)!) uniformly in |¢] <k
for all 1 > 0.
(3) In the hard potentials case v+ 2s > 0, for allt > 0 and all £ € R3 there holds, for any
(>0,

B S
(6.3) IT#(t, ) F ()l 2 (wyey < Ce™ " Z I FE 200y,
for any f satisfying moreover (1.13) in the torus case, where A\1,C > 0 are independent of
t? 57 6'

(4) In the soft potential case v+ 2s < 0, for allt > 0 and all £ € R3 there holds, for any
k,0 >0,

6 I0FEOP T < (1+5) T IO,

for any f satisfying moreover (1.13) in the torus case, where C' > 0 is independent of

t, & €.

Proof. The proof is the same as in [24, Lemma 5.10]. For the soft potentials case, we need
to replace the use of [75, Theorem 3.2 and Remark 5.2] in the proof by [76, Theorem 1.1 and
Section 4], in particular the decay estimate (6.4) comes from [76, Equation (2.46)] and the
fact that Bo(¢)P+ = B(¢)P*, where By(¢) and B(&) are defined in [76, Equation (1.18)]
and satisfy By(§) = B(§) — P. O

B (e ) =8 () e

for 1 < j <4, we can further split (A]]E into four parts (one main part and three remainder
terms):

(65) Us = Uny + US4+ U + U%,

Denoting

where

(t f) = €m]‘§|7fﬁjt‘§|zpo <|§|>

05,6 = (x (E1) = 1) ettt py (Z)
U5(8,€) = x (55') g€l = Bjtlel? (et”fj” ) P (|§|)

[ el¢] et _goge2 218D ~
;2(t7§) =X () e“‘ﬂ‘ﬂs Bjtlé] e e E|§’Pj e, 2 ).
) |5|
In particular we observe that ﬁ§0 and ﬁjo are independent of ¢, so that we define

(6.6) U(t,€) := Uso(t,€) + U (¢, ©),
which is then independent of . We finally define
(6.7) U(t) = F U (1) Fo.
We say that a function f = f(z,v) € Ker L is well-prepared if
2 _
Fla.w) = {pm(x) Fulfl(e) v+ e[f]<x>('“'23)} VHW)

with

V. -ulf] =0 and plf] +0[f] =0,
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where we recall that p[f], u[f], 0[f] are defined in (2.4)

Lemma 6.2. ([39], Proposition A.3) We have that U(0) is the projection on the subset of
Ker L consisting of functions f that are well-prepared. We also have

Ut)f =U@U0)f, Vt=>0,
and
Ve ulf]=0 and plf]+0[f]=0 = P)&Hf=0 j=12

The following lemma studies the limit of U®(t) as € goes to 0.
Lemma 6.3. Let f = f(x,v) € Ker L be well-prepared, then we have
10°C) = OO leyezers 1y

and

1) = O Fllyrers < el ez

Proof. The proof follows the idea of [39, Lemma 3.5], that we shall adapt since we work in
different functional spaces.

First of all we observe that from the decomposition of U¢ in (6.5) we can write, for all
t>0and &€,

U%(t,6)1(6) = Ut F(©) = Y {T5F . 0 F(©) + Un (1, J(&) + U1, ©)(©)}

J=1

o~

+Z €) + U (t,€) f(£),

and we shall estimate each term separately below.
We first compute the term U5, (¢) f for j = 1,2,3,4 and m = 1,2. For the Uj; term,

using Lemma 6.1 together with the inequality |e® — 1| < |alel®! for any a € R, we have
(6.8)

() e |25 ] < () e e < (L) el < mingn, el

Then we can compute, for all t > 0 and ¢ € R3,

05 7@z <x ()

S min{1L, el¢ ]| F(€)ll3-
For the U 5(t,€) term we have

ARG ES

Smin{1, e[¢[H £ (€l r2-
For the term ﬁfg% (t,€), using the fact that

(6.9 (D)~ 1| < mina,ele,

we have
1T (1, F(©)llzz < (X (i?) - 1)

Smin{1, ¢} /(€] 2
Taking the L%Ll?o norm in both sides yields, for all j =1, 2,3, 4,

1050 Pllzgzgeza + 105200 gz + 005 O yrens S mind1F gzl g o)

v](s\ﬁl)

ciosl€1L—B;

) 7, (el€D)
(75 =) IPACEFO sz

. ;I
i€l L —B5tlEl? t=—z—

elélll Bi(e&, ) F©)llz

i€ £ =B;

P F©)lre
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By Lemma 6.2 we have, if f € Ker L is a well-prepared data, then
Ulof + Uxf = 0.
Finally we compute the term U# (¢, ¢), noticing that

4
U#(t,€)f(€.0) = U5(t.)U(0,) J(&,v) = U°(t.€) (1 - X (f') D Bl 5)) ().
j=1
Since f belongs to Ker L, we have
[7e# Y _JJE _ ﬂ E5|£| !
O#(1,€) 7€, v) = U°(1,¢) (1 () e (22 )]Zl 1 (6) | 7).
By Proposition 3.2 we deduce

15O azezz <11~ (D)~ lety (1) 3 ) e

j=1
<min | Fll 2oz <1 Pl ez )
thus the proof is finished by gathering together the two previous estimates. O

6.2. Estimates on ¥¢. The decomposition of the semigroup U¢(¢) in (6.5) also gives us a
decomposition of the operator ¥¢(t) defined in (6.1).

Lemma 6.4. The following decomposition holds

4
=) WS 4 U
j=1
with
T fy, fo)(1€) - / O (t — 7,6 Paym(f1(7), fo(7))(€) dr,

and, for all 1 < j <4,
s \Iiso—i-‘ll + W5 + U,
where

Fiplfi, ol(1,€) = [ I B IP e Py f1(), o))
G 2109 = (x () —1) [ el TR g PP (1), ()

T ! > 7 (el€) R
Yali 26 =X (gf‘)/o ‘ e ( e 1) €1P} () Tsym (f1(7), fo(7))(€) dr,
. .

W;Q[flva](t,g) =X <€E‘) /0 et

2 (fn ( 1<) .
IR D T e R P2 () Pym (1 (7). fa(r))(€) d
Similarly as above, we observe again that that ‘T’io and ‘T’io are independent of €, so
that we define

(6.10) U[f, g)(t,€) = 5[, gl(t,€) + V5o f, g)(L, €)
which is then independent of . We finally define
(6.11) U(f,g)(t) = F, "O[f, g) () Fu

We are now able to prove the following result on the convergence of ¥¢ towards W.

Lemma 6.5. Let (po,ug,6y) satisfy the hypotheses of Theorem 2.2 and consider the
associated global unique solution (p,u,8) to (1.17). Let also go = go(x,v) € Ker L be
defined by (2.16) and g = g(t,xz,v) € Ker L by (2.18). Then we have:

(1) Torus case Q, = T3: There holds

109,91~ ¥lg. gl cpazers S e (101 + G000z )
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(2) Whole space case 0, = R3: For any p € (3/2, 00| there holds
19°19.91 — Plg. lagiers S o (1ol yus + 1005 + 10l s + Wnltpee ) -

Proof. We adapt the proof of [39, Lemma 4.1] for the cutoff Boltzmann equation with hard
potentials. Thanks to the decomposition of ¢ in Lemma 6.4 we write, for all £ > 0 and
£ ey,

4

Vg, 9]t €) — g, g1(t,€) = > { W59, 1(¢,€) + W51 [g, 9)(1,€) + Tialg, 9] (1,€) }

7j=1
2

+ 3" U5lg, 9l(t,€) + TF[g, 9] (1, €).
7j=1

We remark that for the zero frequency & = 0 we have

U< (g, g](t,0) = TH[g, g](t,0).
We split the proof into several steps and estimate each term separately below.
Step 1. By Lemma 6.4 and (6.9), for the term @;#[g,g] with j =1,2,3,4, for all t > 0 and
all £ € Q¢ \ {0} we have

| w5 19.912.9)||, dr

L3

A

’XCE)_WKJ%WﬂWwW%éﬁ@myvmﬂ
fgaéﬁf@“—ﬂwﬁgﬁmwgwmg@ﬂﬂﬁﬂhzdf

< elT(g, 9) () Lo r2-

Similarly for the term \Ilﬂ[g g, by Lemma 6.4 and (6.8) we have, for all j =1,2,3,4,

el¢ _py(e—mep? | (t-r) G .
G531 61000, < x (L) [ emmtonien |52 gl [P0, o), o
K 0 L3
t B ~
Seéfr%“”MFmﬂwwwmgw»@m@df
< 5Hf(979)(5)||L;>°L3-
Similarly for the term ‘Tfﬁ. 519, 9], by Lemma 6.4 we have, for all j = 1,2, 3,4,
el¢ PR ij(\s\)
@5l 6106, 8)], 5 x (S [ emmemie? [n 2 ciep | P2(ee) (ot o), dr
K 0 Lv

t h 2 —~
<gA<;i@fM'm%wmwmgw»@m%dT

S elt(9,9) ()2
Taking the L%L;?O norm on both side we finally obtain, for all j = 1,2, 3,4,

2

||‘I’Jo l9, 9]||L1L§°Lg + ||‘T’§1[9a9]||L1L§OLg + ||‘i’§2[9a9]||LéL§°Lg S 5||f(9»9)||L§L;>OLg-
Thanks to [69] and the fact that ||(v)*Pe| gm < [Po| 12 for all m, ¢ > 0, we have
(6.12) IT(Pg1,Pg2)llr2 < [Pgrllr2lIPgallrz2,
therefore arguing as in Lemma 4.1 it follows, for any p € [1,00] and ¢ > 0,
(6.13) IT(g, g)HLpL‘xLQ(( S \|9HL1L°<>L2H9HLPL°°L2
We therefore obtain, for all j = 1,2, 3,4,

(6.14) H‘I’E#[ng]HLéLgoLg + H\Ilil[gmg]HLéLfoL% + H\II§2[979]HL%L§°L% S EHQH%éLgOLg'
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Step 2. We now focus on the term \lljo[g g] with j = 1,2, and recall that a; > 0 for j =1, 2.
We denote

H(t,7,€) = S g PH ST (g(r), 9(7) (€),

and thus, using integration by parts, for all ¢ > 0 and all £ € Q’5 \ {0} we have
(6.15)

=~ t. t—T
W?o[g,g](t,ﬁ)zfo i €15 £

§

(=DIEP 1| PO T (g(7), g(1)) (€) dr

_ & ([ asleiss rOdr — H gialelt

- (/0 CoLH (7€) dr — (4 1,€) + H(t0§)>
_ & ([ giaslet== —8;t—m)Iel? p1 ¢ &\ . .

= ([ e T e B (R (a(r) ) € )

E ([ giosle=z -sie-nieP pr( § .
ce(fe Pl (3g)0-Plalr).alr)(€) dr
AN CONTONES

Qg €]

b Sl B LT ((0),5(0) (0

=: Il(t,f) + Ig(t,f) + Ig(t,f) + I4(t,§).

For the first term in (6.15) we have for all ¢ > 0 and £ € €0}, using Lemma 6.4,

t R
10Oz S [ Bylee 5P (g(r), o(r)(O 1z dr
< el (9.9) (e
Similarly, for the third term in (6.15) there holds

173t €)ll2 S €llT(9(2), 9(0) ()]l 2
S elT(g,9) () oo 3

and for the fourth one
I IPILIES
1Za(t, )13 < e T(g(0), 9(0))(€) Il
S €||F(9,g)(§)||Lg°Lg-
This yields
(6.16)  [[illprgerz +Msllningers + Mallpirgerz S elll(9: 9l ireers S 5||§||i§L;;oLga

where we have used (6.13) in last inequality.
For the second term in (6.15) we first write, for all ¢ > 0 and & € .,

t ~
12t Oz S 2 [ e o, (g(r), 9(r)) ()l
Since E%f(g,g) = f(@Tg,g) + f(g, 0-9), from (6.12) we get
10 P(a(r): 9 Olsz S ), 13(€ = )l 0rgtr )l

As g is defined through (u, 6, p) which satisfies the Navier-Stokes-Fourier system (1.17), we
have for all 7 > 0 and all n € €

10-g(r, 2 < 1nl*1g(7,m)l 2 + Il /Q 19(r,n = Olle2llg(, Oll £z A<
<



40 C. CAO AND K. CARRAPATOSO

This implies
¢ (f— 2 —~ ~
128,612 S /0 e Pl /Q g€ = )z PG, m)| 3 dn dr
n

t 2 N ~ ~
+e/0 e~ Filt=mll /Q IIQ(T,f—n)HLg!n\/ﬂ, lg(r.n = Ollzzllg(r, Ol 2 d¢ dndr
n ¢
= Rl(t7£) + RQ(t7§)

For the term R; we split the integral on 7 into two parts: the region 2|¢| > |n| in which we
have |n|? < 4/¢|%; and the region 2|¢| < || where we have |n — &| ~ |n|, which yields

t el R R
Raft§) Se [ e [ 1 oigllglr. € —milzglnllg(rn)zz dndr
n

t o 9 ~ R
+6/0 6_/8J(t 7)[¢] /Q, 1|’7\22\§|Hg(7’§_77)”L%\77\2Hg(7,77)HL% d??d’]’
n
t el R A
Se [P [ g mlzzllgtr i dndr
n
t o 9 ~ R
te [ BR[| e~ nllgr,s = m)lnllarn) oz dndr.
n

Thanks to Holder’s inequality in the time variable, it follows

1R €)la S [ 180 = mllegerz 80D ez d

/
n

+ 8/9, 1€ = nlllg(€ = mllzzczlnlllg(m 22z dn,

n
therefore taking the Lé norm and using Young’s convolution inequality we obtain
~12 12
(6.17) | R1 ”LéL;’O S EHQHL%LgoL% + £l |§|9HL§L§L%‘

For the term Ry we write

t
1Ra(€) ez S esup [ 1ele I [ gre —mlsalal [ 1a6rn - Ol 37 Clsz dC dmr
t>0 J0 Q% Q'C
t 9 1/2 S 1/2
sesup(/ g2 Pt df) = (/ G(T,é)QdT) ,
>0 \Jo 0

where we denote

GO = [ atre=mlpHEmdn Hem) =l | 1300=0llzlar Ol .
7 ¢

(i
By Minkowski and Hoélder inequalities

1/2

6@z s [, ([ I - wlslaenpar)
n
S | 18 = mlage ezl Hn) 1z
n
Moreover

HE) S [ =gt = Ollglatr Ol s + [ 1atrn = Ol cllatr. Ol dc.
9 9
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Thus again by Minkowski and Holder inequalities,

00 1/2
el < [ ([ e = clatrn - Olglatr s ar) ¢

¢

00 1/2
+ ([T et - O liclae g ar)  ag

’
QC

S [ 130 = Ollerz I, s .
Q

¢
Hence we get

IRa(@llu ™ [, 1806 = iz 300 = Ol IO 3 4 o

t v
Taking the L5 norm and distinguishing between high and low frequencies yields
(6.18) ||1|§\21R2HL§L§° S 5||/9\||%%L§OL5H‘f@”L%L%Lg:

and, in the whole space case Q, = R3 and Q’g = R3,
(6.19)

g ol e S ligaalel Ny | [, 1906 = mllealtn = Ol callla ez ac an

Lg
S 5||9HL§L§°L5||9||L§L;>°LgH’ﬂg”L;LELgv
where we have used that 1jgq|¢]7! € Lé’l since p > 3/2.

Step 3. It only remains to compute the term \T/E#, for which we first write, for all ¢ > 0
and & € Q,

1 #(g, 9] (¢, €)l| 3 S / [T (8 = 7, )T (g(7), g(r)(€) ] 3 dr-

In the hard potentials case v+ 2s > 0, thanks to (6.3) we have, for all ¢ > 0 and & € Q,

~ t
159, 01l S £ [ € T P00, 9Oz dr
0
1 ~ t t—7
S IRl [ T

S el (g, 9)(E) ez

For the soft potentials case v 4 2s < 0, observing that Pf(g g) = 0 we fix £ > 0 such that
i > 1 then we use (6.4) to obtain, for all t > 0 and £ € Q,

dr

|’7+23

#0010 Oz s 1 [ (14 “‘27))_”23' IPo(r), g 120y 7

&
14

(t_T))—Mzs N

g2

1 ~ t
S LG 9 lsprzn [ (1+

< 5Hf(£7;g)(f)”LgOLg((vV)-

Taking the L%LtOo norm in above estimates and using (6.13) yields, for both hard
potentials and soft potentials cases,

(6.20) N2 [gvg]HLéLfoL% < €H§H%§L§OL5'

Step 4: Conclusion. We conclude the proof by gathering estimates (6.14), (6.16), (6.17),
(6.18), (6.19), and (6.20) together with the bounds for g from Theorem 2.2. O
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6.3. Proof of Theorem 2.3. Let f¢, for any ¢ € (0, 1], be the unique global mild solution
to (1.9) associated to the initial data f§ constructed in Theorem 2.1.

Let g = Pg be the kinetic distribution defined by (2.18) through the unique global
mild solution (p,u, ) to (1.17) associated to the initial data (po,uo,8p) constructed in
Theorem 2.2, and denote also gg = Pgo the initial kinetic distribution defined by (2.16)
through the initial data (pg, ug, o).

We now from [13, 39] for instance, that g verifies the equation
(6.21) g(t) =U(t)go + V¥lg, g](¢),

where we recall that U(t) is defined in (6.7), and ¥(¢) in (6.11). Taking the Fourier
transform in = € €),, we then have

(6.22) 9(t.€) = U(t,€)do(€) + Tlg, g(t, €).

for all § € Q, and where we recall that U is defined in (6.6), and ¥ in (6.10).
We first observe that the difference f¢ — g satisfies

FE©) — (&) = U (t,€) f (&) — U(t,€)go(€) + T[f2, £](t,€) — Vg, g](t,€)
= 06,9 {F5(©) — 90(©)} + {U°(t.0) - U(1.€) } Go(©)

+ { W09, 91(t.€) = Wlg,9)(t, ) } + {T°LF7, F7(.€) = ¥lg, g)(1,€) }
=T1+Tr + T35+ 1Ty,

(6.23)

and we estimate each one of these terms separately.
For the first term, from Lemma 6.1 we have

1UFCFS = GotlLigers S 15 —Gollricz-

Thanks to Lemma 6.3 and an interpolation argument, we obtain for the second term, for
any ¢ € [0, 1],

HO*() = U(Ngollprrgers < €116 Goll iz
gt ¢
For the third term we use Lemma 6.5, which yields
196o.9) = #lo, s zzerz S = (10l + 0035
in the case , = T3, and
19°6o. 91 = #lo, s zzers S = (1l + 10005 + 1012 + 10l iz ).

in the case Q, = R3.
For the fourth term Ty, we first decompose f& = PLf¢ 4+ Pf¢ and use that g = Pg to
write

Ty = {I}E[fgv fa](tv §) - ‘/I}E[ga g](t7 g)
= U[PHf° P oY(E €) + 20° [P 5, P £ (2,€)
+ U [P, P(f° — 9))(t,€) + U [Py, P(f° — g)](t,€).
Thanks to Proposition 3.3 and Lemma 4.1 we have
[T [P fe, P £ lLireerz S TP fe, P £e] ||L%L§(H,§’*)'
S HPJ_fEHLéLfOL% P+ 7 lzizzmges
moreover
|DE[P f<, P f7] ||L%L§°L% S ITP s, Py ”LéLf(Hf,‘*)’ + TP f2, P fe] HL%L%(Hf,‘*)’

. L
SIPFllirse 2 P ol Lz g
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where we have used that [|Pg|| 73+ < |[Po| £z and [[(0)~0/249)=¢| 2 < min{[|¢] 2z, 6] s+ }-
This implies

[T [P fe, P fe] HL%L?"L% + 2| T [P e, P ||LéL;’°L%

S ”LéLtOOLg ”PJ_fEHLéLfo,‘*’
Therefore, using the bounds of Theorem 2.1, we deduce from (6.24) that
=P F=, P fo g ny + 20005 [P S5 P f Iy o S ellfolIEnLs,

(6.24)

in the case Q, = T3, and
P17 P gy + 20T P P grre S 2 (W s + 15y )

in the case Q, = R3.
Furthermore, from Proposition 3.3 and Lemma 4.1, and also using that [[P¢|| s+ <
P62, we have

H‘T’E[Pfaa P(f*—g)] HL%L;”L%
S IFP = ). Pl zqzey + DRSSP = D)z
S ||P(J?8 - g)HL%LtDOL% HP.]?EHL%Lngy
and similarly
%Py, P(f* — )]s 12
SIT®g. P = ) lprzcuzey +IT®U ~9).Po)l sz ey
S HP(J?E - §)HL%L§OL3 HPEHLéLng-

In the case of the torus Q, = T3, we can use the bounds of Theorem 2.1-(1) and
Theorem 2.2—(1) to obtain

NEP S P = DlllLirgerz + 195 [Pg, P(f° = 9)lllLirer2
S (175 ez + ol zizz ) 1F° = llzs ez
Smellff - gHL%L‘t”L%'
In the case of the whole space Q, = R?, we first use (4.15) to write

Prles < |15 |G

)

2
LYL2L3

L1L2L2
then we use the bounds of Theorem 2.1-(2) and Theorem 2.2—(2) to get
=P = 9), Pl ptpgerz + 195 [Pg, P(f° = )l 1rpor2
< (18 Nz + 17 lzzes + Wdoles + ol zoca) 17 — @y
S mellfF - §”L§L§°Lg-

Gathering previous estimates and using that 7o > 0 is small enough, so that when taking
the Li Ly° Ly norm of (6.23) the fourth and fifth terms in the right-hand side of (6.23) can
be absorbed by the left-hand side, we deduce

n: ~ n: ~ 0 o~
15 = 9llzireerz SI6 = Gollyrz + (6 Foll Lz
(6.25) o . -
e (180l 2q + Wl ) + <1518,
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in the case Q, = T3, and

P PN 511\
[P g”LéLf"L% S s - gOHLéL% + 7€) QOHLng

(6.26) e (1800325 + 1901325 + 19olBp.s + 150032

e (1510 + 175

in the case 0, = R3. From these estimates, we first conclude that

lim £ = §HL§L§°L5 =0,

assuming moreover that (£)°gy € L%L?) for some § € (0, 1]. We can finally prove Theorem 2.3,

where we only assume gy € Lg L2, by using the previous convergence and arguing by density
as in [24]. This completes the proof of Theorem 2.3.
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