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HOMOGENEOUS LANDAU EQUATION FOR MAXWELLIAN
MOLECULES
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ABSTRACT. We prove a quantitative propagation of chaos and entropic chaos, uni-
formly in time, for the spatially homogeneous Landau equation in the case of Maxwellian
molecules. We improve the results of Fontbona, Guérin and Méléard [9] and Fournier [10]
where the propagation of chaos is proved for finite time. Moreover, we prove a quanti-
tative estimate on the rate of convergence to equilibrium uniformly in the number of
particles.
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1. INTRODUCTION

An important open problem in kinetic theory is to derive the Boltzmann equation
from a many-particle system undergoing Newton’s laws of dynamics. The correct scaling
limit for this is the so-called Boltzmann-Grad or low density limit, see Grad [12]. The
best result is due to Lanford [19] who proved the limit for short times (see also Illner
and Pulvirenti [16] and Gallagher, Saint-Raymond and Texier [11]).

Kac [17] proposed to derive the spatially homogeneous Boltzmann equation from a
many-particle Markov process, performing a mean-field limit. The program set by Kac
in [17] was then to investigate the behaviour of solutions of the mean-field equation in
terms of the behaviour of the solutions of the master equation, i.e. the equation for the
law of the many-particle process. We refer to Mischler and Mouhot [22] for a detailed
introduction on Kac’s program and for recent important results.

In the same way, we would like to derive rigorously another equation from kinetic
theory, the Landau equation, from a many-particle system described by Newton’s laws.
It is an open problem, but the correct scaling to this is also known, the weak-coupling
limit, and we refer to Bobylev, Pulvirenti and Saffirio [3] and the references therein for
more information on this topic and partial results. We do not pursue this problem here.

Instead, in this work, we shall use the approach described above introduced by Kac
[17]. Hence, we shall introduce a N-particle Markov process (see Section 2.3) from
which we derive the spatially homogeneous Landau equation in the mean-field limit.
The N-particle process used here is obtained by means of the grazing collisions limit
applied to the N-particle master equation for the Boltzmann model. We should mention
that the N-particle master equation introduced here was, in fact, originally proposed
by Balescu and Prigogine in the 1950’s (see [18] and references therein); and it is also
studied by Kiessling and Lancelloti [18] and Miot, Pulvirenti and Saffirio [21] (both in
the Coulomb case).

Let us briefly explain how we can prove the mean-field limit with the approach
proposed by Kac. Consider the probability density F}¥ associated to the Landau
N-particle system and its evolution equation, i.e. the master equation (Section 2.3).
Integrating this equation over all variables but the first, we obtain an evolution equation
for the first marginal IT;(F}Y) that depends on the second marginal TIy(F}Y). If the
second marginal of the probability density was the 2-fold tensor product of a one-particle
probability f;, then f; would satisfy the Landau equation (Section 2.2). However, even if
at initial time we start with an N-fold tensor probability FV(0) = f(0)®", this property
can not be satisfied at later time because there are interactions between the particles.
Kac suggested then that the chaos property (see definition below (1.1)), which is weaker
than the tensor product property, could be propagated in time, which in turns would
prove the mean-field limit.

1.1. Known results. Before giving our main results let us present known results
concerning the propagation of chaos for the Landau equation for Maxwellian molecules.

The work of Fontbona, Guérin and Méléard [9] consider a nonlinear diffusion processes
driven by a white noise that have an interpretation in terms of PDEs corresponding to
the Landau equation. They construct an N-particle system that converges, in the limit
N — oo and in finite time, to the nonlinear process and, moreover, obtain quantitative
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convergence rates in Wasserstein distance Ws. Then Fournier [10], with the same
probabilistic interpretation, improves the rate of convergence of [9].

We should mention that the Landau master equation introduced in this work (Section
2.3) differs from the master equation associated to the N-particle process in [9, 10], see
Remark 2.1, indeed the master equation studied in this paper is conservative whereas
that in [9, 10] is not.

1.2. Main results. Consider a Polish space F, we shall denote by P(FE) the space of
probability measures on . We denote by Psym (E™Y) the space of symmetric probabilities
on EYN. We say that a symmetric probability FV € Py, (EY) is f-chaotic (or Kac
chaotic), for some probability f € P(E), if for all ¢ € N* we have

(1.1) FN —~ f® when N — oo,

where FV = II,(F”) is the £-th marginal of ¥ and the convergence has to be understood
in weak sense on P(E?), i.e. the convergence of integral against continuous and bounded
functions ¢ € Cy(E*). In this paper we are interested in quantitative rates of convergence,
more precisely we shall investigate estimates of the type, for any ¢ € F®¢ with F € Cy(E)
and ||| o <1,

(FN = 124, 0)| < =),
with a constant C({) possibly depending on ¢ and a function £(N) — 0 when N — cc.

Another possibility is to replace the left-hand side of the last equation by some distance
on the space of probabilities, as for example the Wasserstein distance, W7 (F, ZN , o0,

The many-particle process can be considered in R and then its law FV is a
symmetric probability measure on R*Y | however, thanks to the conservation laws, the
process can be restricted to some sub-manifold of R“V. In our case, the dynamics of
the many-particle process conserves momentum and energy (see Section 2 for details),
which implies that the process can be restricted to
(1.2)

N N
1 1
N — — dN . o 2 _ it -
SN(EM) = {v_ (v1,-..,on) €RMY S ;yvz MP=¢, & ;UZ_M}
where £ > 0 and M € R%. We consider through the paper, without loss of generality,
the case M = 0, we denote SV (&) := SV(£,0) and call these sub-manifolds Boltzmann’s
spheres.

Initial data. Considering the process in SV (&), we shall need an initial data Fi¥ €
Py (SN (€)) that is fo-chaotic for some fo € P(R?). This problem was studied in [5],
where it is proven that for some (regular enough) probability measure f € P(R?), with
zero momentum M = [vf =0 and energy & = [ |v|2f, we can construct a probability
measure FV € Py, (SV(E)) that is f-chaotic (and also entropically f-chaotic, see
Section 5 for the definition), by taking the tensor product of f and then restricting it to
the Boltzmann’s sphere S™(£). We shall denote this probability measure by

foN

SN T fSN(S) FON gy N g

(1.3) FY = [foN] a

where vV is the uniform probability measure on SV (&).
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We can now state our main results in a simplified version.
Theorem 1.1. Consider fo € P(RY), with zero momentum and energy £, and also
FY = [f(j@N]SN(g) € Pym(SN(E)). Let fi be the solution of the Landau equation for

Mazwellian molecules (see (2.10)) with initial data fo and FN the solution of the Landau
master equation for Mazwellian molecules (see (2.29)) with initial data FZY.

(1) (Theorems 4.1 and 4.2) Then, for all N € N* we have

Wl (FtN’ 2égN)
sup
>0 N

< e1(N),

where €1 is a polynomial function and e1(N) — 0 as N — oo.
Moreover, for all t > 0, for all N € N*, we have

Wy (Fth ’YN)
N

for a polynomial rate p(t) — 0 as t — oo and where v is the uniform probability
measure on SN (E).

(2) (Theorem 5.3) Then, for all N € N* we have

< p(1),

sup |- H(EN V) — H(jil) | < ex(N),
>0
where €9 is a polynomial function eo(N) — 0 as N — oo, H(f|vy) denotes the relative
entropy of f; with respect to -y, the centred Gaussian probability measure in R® with
energy £, and H(FN|v"™) denotes the relative entropy of F}N with respect to vV (see
Section ).
Moreover, for all t > 0, for all N € N*, we have

1
S HEM ™) < plo)

for some polynomial function p(t) — 0 ast — co.

1.3. Strategy. Since the work of Kac [17], propagation of chaos has been investigated
by many authors and for different models, and we refer the reader to [22] and the
references therein for a discussion of several results and different methods related to this
problem.

This work is based on an abstract method recent developed by Mischler and Mouhot [22]
to prove quantitative and uniform in time propagation of chaos for Boltzmann models,
and also by Mischler, Mouhot and Wennberg [23] to prove quantitative propagation of
chaos for drift, diffusion and jump processes. We shall first generalise the method of [22],
that we call “consistency-stability method”, to the case of the Landau equation. This
method reduces the propagation of chaos to some consistency and stability estimates
for the semigroups and generators associated to the N-particle system and to the limit
mean-field equation (see Section 3 for the details). Then we shall investigate these
consistency and stability estimates for the Landau equation in order to be able to apply
the “consistency-stability method” built before and obtain a quantitative and uniform in
time propagation of chaos. Finally, we investigate the propagation of entropic chaos, as
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a consequence of the previous estimate together with some results on chaotic probability
measures from Hauray and Mischler [15] and from the author [5].

1.4. Organisation of the paper. Section 2 is devoted to deduce a N-particle stochastic
process modelling the Landau dynamics and to present the limit Landau equation. In
Section 3 we adapt the consistency-stability method of [22] (see also [23]), and we state
an abstract theorem (Theorem 3.11). In Section 4 we apply the method presented
before to the Landau model in order to prove the propagation of chaos with quantitative
rate and uniformly in time (Theorems 4.1 and 4.2). Finally, in Section 5 we prove a
quantitative propagation of entropic chaos uniformly in time (Theorem 5.3).

Acknowledgements. The author would like to thank Stéphane Mischler and Clément
Moubhot for suggesting the subject, their encouragement and fruitful discussions.

2. THE LANDAU MODEL

Our aim in this section is to present the N-particle system and the limit mean-field
equation corresponding to the Landau model. The limit Landau equation is well known
and we shall present it in the Section 2.2. Furthermore, in Section 2.3 we deduce a
master equation for the N-particle system corresponding to the Landau dynamics.

First of all, we present the Boltzmann model, with its master equation and limit
equation, which will be very useful in the sequel since Boltzmann and Landau equations
are linked by the asymptotic of grazing collisions that we shall explain in details later.

2.1. The Boltzmann model. We present here the Boltzmann model, with the limit
mean field equation and the master equation. The spatially homogeneous Boltzmann
equation [31, 22] is given by, for f = f(t,v),

with the collision operator defined by

22 Q)= [ Bl vleost) (e f0) ~ g0 f(0)) do. do

and where the post-collisional velocities v" and v, are given by

;U Ul v — vy ;o vt v |u—wy
(2.3) v=— + 5 O Ve = 5
and cosf = o - (v —vy)/|v — vi|.

We assume that the collision kernel B satisfies B(|z|,cos€) = I'(|z|)b(cos6) (for more
information on the collision kernel we refer to [31]) for some nonnegative functions I' and
b. When the interaction potential is proportional to »~*, where r denotes the distance
between particles, then we have

L(|z]) = |27, sin?™2 0 b(cos B) ~ C, 717" when 6 ~ 0,

with v = (s —2d+2) /s, for some constant C; > 0 and some fixed v € (0,2). For example,
in the 3-dimensional case we have v = 2/s.



6 KLEBER CARRAPATOSO

In this work we are concerned with the case of true Mazwellian molecules v = 0
(which corresponds to s = 2d — 2), we shall then consider through the paper the following
assumption :

B(|z|,cos @) = b(cos0),

2.4
(24) / b(cos0)(1 — cos0)*t* do < +o00, Va > 0.
gd—1

We remark that in this case we have [q4, b(cosf)do = oo but [gu 1 b(cosf)(1 —
cosf) do < 0.

Another possible way to describe the pre and post-collisional velocities is the w-
representation (see [31])

(2.5) V=v—(v—v,ww, V.=vs+W0—-vww, wE st

which gives us

Qn(r.)= [

RdxSd—1

Bl = v.],w) (0 F() = F(0) f(0)) do dov,

where B(z,w) = [2(z/|2],w)|*2 B(z,0) = |2[7by() and « is the angle formed by z and
w, and the following relation holds

(2.6) - —*‘ i <w, —|> o

Let us now present the many-particle model [20, 17, 22, 4, 23]. Given a pre-collisional
system of velocities V = (vy,...,uy) € R¥ and a collision kernel B(|z|,cosf) =
I'(|z])b(cos ), the process is: for any i’ # j’, pick a random time T(I'(|vy — vj])) of
collision accordingly to an exponential law of parameter I'(|v;y — v;/|) and choose the
minimum time 7; and the colliding pair (v;,v;); draw o € S¥71 € R? according to
the law b(cos ;;), with cos0;; = o - (v; —v;)/|vi — vj|; after collision the new velocities

/ /

become VZ’J = (V1y+-+, V.3 V), .., UN) With

vi v |V — U Vi + Uj Vi — Uj
(2.7) Qé _ 5 J + | v 5 J’(T’ ; _ 5 J _ | ¢ 5 J‘

Iterating this construction we built then the associated Markov process (Vt):>0 on
R, As explained in the introduction, we can also consider this process on SN (€).
Then, after a rescaling of time and denoting FtN the law of V4, the master equation is
given in dual form by [22, 23],

g.

(2.8) O FY, ) = (FY, G )
where, for any V € R,
1 N
(2.9) GelV) = 5 32 =) /S“ b(cosbi) (¢ — @) do
1,]=

with the shorthand notation ¢j; = ¢(V};) and ¢ = ¢(V) € Cy(R). We shall consider
the case of true Maxwellian molecules, i.e. I'(|z]) = 1 and b(cos 0) satisfying (2.4).
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2.2. Limit equation. We present here the limit spatially homogeneous Landau equation
for Maxwellian molecules and some of its basic properties, for more information we refer
to [31, 29, 28|.

The Landau equation is a kinetic model in plasma physics that describes the evolution
of the density f of a gas in the phase space of all positions and velocities of particles.
Assuming that the density function does not depend on the position, we obtain the
spatially homogeneous Landau equation in the form

(2.10) of = QLS. f),

where f = f(t,v) is the density of particles with velocity v € R? at time ¢t € R*. The
Landau operator is given by

210 Quof) =00 { [ as(v - 0 (020027 (0) - Dpgl0-)1(0) do |

where here and below we shall use the convention of implicit summation over indices.
Moreover, the matrix a is nonnegative, symmetric and depends on the interaction
between particles. If two particles interact with a potential proportional to 1/7*, where
r denotes their distance, then we have

V4 ZB
apl2) = M Map(2), Thap(:) = by = T2

with v = (s —2d 4 2)/s and some constant A € (0,00). As for the Boltzmann equation,
we only consider the case of Maxwellian molecules v = 0, i.e.

(2.12) aap(2) = Az[*TL,p(2).
We also define
(2.13) ba(z) = 0ganp(z) = —A(d — 1)z, c(z) = Onpaap(z) = —3A(d — 1),
and we denote
(aB = QaB * f, bo = bo * f, C=c* f.

Hence, we can write the Landau equation in another form

(214) atf = aaﬁaocﬁf - Ef-
Moreover, let ¢ = ¢(v) be a test function, then we have the following weak forms
(2.15) /QL(f, fle=— 5 /dv dvy f fea(v — vy) (ff — ff ) (Vo — Vips)
or
1
[@utrne=; [ dvde. f1.a0sto = 0)@uso + @uso).)
(2.16)

4 / 00 dv, £ f.ba(0 — 1) (Oap — (D)),

where hereafter we use the notation f = f(v), f« = f(vs), Vf =V f(v), Vife = Vf(vi)

and for a matrix a and vectors z, w we denote azw = an,gzowg.
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This equation satisfies the conservation of mass, momentum and energy. Moreover,
the entropy H(f) = [ flog f is non-increasing, indeed taking ¢ = log f we obtain

T H(p) = —D(f

dt B
N _ Vi Vif\ (VY Vil
= j/(fj; Vx < ‘f j; > < ‘f j; > dv dv, S;O,

since @ is nonnegative, which is the Landau version of the H-theorem of Boltzmann. For
more information we refer to [29].

The Landau equation was introduced by Landau in 1936. Later it was proven that
the Landau equation can be obtained as a limit of the Boltzmann equation when grazing
collisions prevail (see [7, 1, 6, 28] and the references therein for more details).

(2.17)

2.3. Master equation. We derive a master equation for the Landau model. It is based
on [28] where they use the grazing collisions limit to pass from Boltzmann to Landau
limit equations (see also [7, 1, 6]). Since we know the master equation for the Boltzmann
model (2.8), we shall perform the grazing collisions limit to obtain a master equation
for the Landau model. As explained in the introduction, the master equation we derive
here (see (2.29)) is the same as introduced by Balescu and Prigorine in the 1950’s, and
it is also studied in the works [18, 21].

Grazing collisions. We present here the grazing collision limit as in [28]. Consider the
true Maxwellian molecules collision kernel b satisfying (2.4). We say that b, concentrates
on grazing collisions if:

Y6y > 0, SUPg~g, be(cos) =0 when & —0

(2.18)
A= / be(cosf)(1 —cos@)do — A € (0,00) when & — 0.
gd—1

For the sake of simplicity, to derive the Landau master equation in this section, we
suppose the dimension d = 3 to perform the computations following [28], the other cases
being the same.

From (2.6), using a spherical coordinate system (in dimension d = 3) with axis v — vy,
we have

U — Uy
o= ﬁCOSQ + (cos ¢ b + sin ¢7) sin 6.
/l} —_—
Moreover we have |(v — vi,w)| = |[v — vi| sin(f/2). Finally we can write the operator in
the following way (see [28])

(2.19) Qs(f, 1) /%dqb / a6 / do. CO)(F'F. ~ 1),

with ¢(f) = sin?260b(cosf). In this case, we can rewrite (2.18) and say that (.
concentrates on grazing collisions if for all §y > 0 it hold

SUPp>g, C=(0) -0 when & —0

(2.20) g
A = / sin? 3 ¢:(0)dd — A € (0,00) when e — 0.
0
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Let us consider then the Boltzmann master equation (2.8)-(2.9), using the form of
(2.19), that is

1 N 27 w/2
W) =55 3 [ o [T ancorel; -

ij=1
In this equation, we take a second order Taylor expansion of go’ij and obtain
1
p(Vij) = (V) =D VI(Vi; = V) + 5(Vij = V)T D?p[V](V; = V)
! 3
+O(Vi; = VI").

(2.21)

With the incoming and outgoing velocities V' and V}; (see (2.7)), we have
V;’J -V = (0,...,0,1);—vi,O,...,O,v; —v;,0,...,0).
In (2.21), D[V] and D?p[V] are given by

where V;p = (ai7a§0)1§agg and V?j%@ = (8%,&3%[380)13@7533'
in (2.21) and we get

P(V5) — ¢(V) =V (V) — ) + Vo (V) (¥} — v3)
+ 5 VeV = 00 + V()W) — ;)

+ Vige(V)(w; = vi)(0f — ;) + Vie(V) (v — 0i) (0 — ;) }
+O([V; = V).

Now we substitute Vz; -V

(2.22)

Finally, using (2.7) and (2.5) with v; and v;, one obtains

e(V;) = (V) = = (vi — vj,w)(Vip — Vjp,w) (=T1)
1
(2.23) + 5(”1 R W)2 {V?N’ + V?ﬂ’ - vz‘2j90 - Vfi@} (w,w) (=1T7)

0
+ O <|Ul - ’Uj’3 sin3 2) .

For each pair of particles i and 7, in the orthonormal basis { -2 E, ;}, one has

[vi—v;]’
. 0 5 - 0
w= Y sin = + (cos ¢ h + sin ¢ i) cos =
|Ui—’U]'| 2 2

and then, using the fact that linear combinations of cos ¢ and sin ¢ vanish when integrated
over ¢, we can compute the contribution of 717 integrated over ¢

2m 0
—/ dg(vi — vj,w) (Vi — Vjp,w) = =27 sin’ 5 (Vi = v, Vie = V).
0
Now we have to compute the integral of T, over ¢, we denote

A = {0v; o Ov; 3 + Ou; 0 0v; 50 — Ou; Ou; 59 — Ou; O, 5P}/ 2

Vi, o Vj,o 705, 8
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and in the same orthonormal basis, we compute

0 21
A=|v;— vj]2 sin? 2/ dpAapwawg.
0

Again, linear combinations of cos ¢ and sin ¢ vanish, which implies

21
A=v; — vj|2 sin? g / do ()\11 sin? g + Agg cos? qbcos2 g + As33 sin? gb0082 g)
(2.24) 0

0 A 0 0 A 0 0
=27|v; — vj|2 </\11 sin* = 5 + % cos? 3 sin? 3 + ;3 s 3 — sin? 2)

and we remark that the first coefficient is of order greater than 2 in 6.
We introduce IL,5(v; — v;) the projection over the orthogonal space of - ‘U —L and

—v;]?
the dominant term of (2.24) when 6 — 0 is

o0
v — vj|2 sin? iﬂa/g(vi — Vj)Aag;

or in matricial notation

2 2
L0 (V2p + V20 - V30 - V20)
m|v; — vj]” sin iﬂ(vi —vj): .

2
Finally, we obtain
1 2w , ) ]
3/, dp(e(Vij) — (V) = —5 sin 5 (2(vi —vj), Vig = V)

2.25 ™ Lo 0
( ) + Z’vi — vj\Qst 51_[(% —vj) : (V2g0 + V o= Vwap Vﬁ@)

+ O (”UZ — Q}j‘294 A 1) + O (’Uz — ’Uj‘3(93 A 1) .

Consider now the Boltzmann master equation with kernel (. satisfying the grazing
collisions (2.20) and plug (2.25) in it, we obtain then

GR o Z / md@ (-(6 /0 27:1¢<90§j — )

1,j=1
N
1 w/2 T 2]
(2.20 PN RLOIE T ORISR
) ij=1

T .90
+—\vi—vj]251n2§1_[(v —vj) (V2tp+V p— V”QO Vfigo)

+ 0 (|U1 —’Uj|294 A 1) + O (|U2 — ’Uj|393 A 1) }
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This can be written in the following way
(2.27)

/2 Vi — v
Z / df sin? = Cg( ) (—2|v; — UjFM) ~(Vip = Vjp)

52 v = v5]?

Z / 40 sin® § C.(60) s — v PNl (vs —vy) : (Vip + Vi — Vo — Vi)
1,5=1

N

1 /2

+ > / d0 C.(0) (O (Jvi — vj|20* A1) + O (Jvi — vj|20° A 1))
i,j=1"0

As in [28], the last term converges to 0 when £ — 0. Then we have, using (2.20) and the

definition of the functions a in (2.12) and b in (2.13), when € — 0,

N
GHelv) — =3 2A|vl—vj2|(ﬂ‘l (Vio = V)
3,j=1

N
1
7N Z A|Uz - ’Uj’2H(Ui - U]) (VQSO + v ()0 szgo V]%()D)

(2.28) b=t
= = Z b ) - (Vip — VJQO)
i,j=1
1 N
+on D @i —vy) (Vi + Ve = Vie = Vip) = Gy
ij—1

and that defines the Landau generator G]LV . Finally, we derive the following Landau
master equation

(2.29)
) = (FY.Ge) = [ b =) (Fug~ Ty )
1,7=1
/ Z V2o + V20— Vg — V2 EN (V).
1,7=1

Remark 2.1. In the paper [9], the Landau equation is studied with a probabilistic
approach. In particular they prove that the following process associated to a N-particle
system, for ¢ = 1,..., N,

S d , o2 Y ‘
(2.30) dX! = T S o(X] - xFydBy* + v > b(X] - XF)dt,
k=1 k=1

where B** are N2 independent R%valued Brownian motions, converges to the process

(2.31) X, = X0+\f/ /Rd W (dy,ds) +2/ b(Xs — y)Ps(dy)ds

Rd
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where P; is the law of V; and W is a white noise in space-time. Moreover the process
(2.31) is associated to the spatially homogeneous Landau equation with the coefficients
aap(z) = (007),5(2) and ba(z) := Ogaqp(z). Then, the Kolmogorov equation of (2.30)
is, for a test function ¢ : RN — R and where FtN represents the law of X,

at<F‘tN7 ()0> = <FtN7 Gév(p>

LS [ ) (T~ Ty V)
(232) Ni7j:1 RAN 7 7 iP FA4 t

+1§N:/ a(vi —v;) : (VEe(V) + V3p(V)) FN(dV)
2N ij=17RW ' 7 i 3% ‘ .

In [10], instead of the process (2.31) it was used a similar process with only N independent
Brownian motion, i.e. replacing B** by B* in (2.31), and it gives the same master equation
(2.32). We remark that this equation differs from (2.29) by the terms >_, ;a(v; —
vj) (—V?jgo - ijz-cp> . We will see later in Lemma 4.4 and Remark 4.5 that (2.29) is

conservative whereas (2.32) is not.

Now, in order to obtain a N-particle SDE associated to (2.28)-(2.29), we shall modify
(2.31). Consider then, for i = 1,..., N, Révalued random variables (X});>o satisfying
the following equation

. V2 N A : 9 N .
(2.33)  Vi=1,...,N, dX§:\/—NZJ(XZ—Xf)dZZ’k+NZb(X§—Xf)dt
k=1

- k=1

liti Tt
where, for all 1 <¢ < N and ¢ < k, Zf’k = Bf’k are N(N — 1)/2 independent R?-valued
Brownian motions and the other terms are anti-symmetric Z/"' = —BI**. As in (2.31),

we have a(z) = 0(z)0*(z) and o is symmetric (recall that a also is), i.e. o(—z) = o(2).
Consider a test function ¢ : R — R and let F}N be the law of X;, then from a
straightforward computation we easily deduce that the Kolmogorov equation of (2.33)
is given by (2.29).

3. THE CONSISTENCY-STABILITY METHOD FOR THE LANDAU EQUATION

In this section we adapt the “consistency-stability method” developed in [22] (see
also [23]) in order to be able to apply it later to the Landau equation in Section 4. We
shall introduce our abstract framework in Section 3.1, then we state and prove the main
result of this section (Theorem 3.11) in Section 3.2.

Before going into details let us briefly explain the method, and we refer the reader
to [22, 23] for more information. We want to compare a solution to the N-particle
system F¥ on P(EY) to a solution to the limit mean-field equation f; on P(E), and
the difficulty here arises from the fact that these two solution does not belong to the
same functional space. The first step is then to define a common functional framework
to be able to compare the N-particle dynamics to the limit dynamics. We hence work
at the level of the full limit space P(P(F)) and, at the dual level, C;,(P(E)), through
some projections: we project the N-particle dynamics thanks to the empirical measures,
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and we project the limit dynamics by pullback. More precisely, at the level of the
N-particle dynamics, we introduce the semigroup S}V acting on P(E") associated to
the flow, as well as the semigroup T}V acting on Cy(EY) in duality with it. Moreover,
we introduce, at the level of the limit dynamics, the (nonlinear) semigroup S;° acting on
P(E) associated to the limit mean-field equation, and also the associate linear semigroup
T7° acting on Cp(P(FE)) by pullback. We prove then convergence and stability estimates
between the linear semigroups 7;¥ and T° as N — oco. In order to do this, we identify
the regularity required to prove a consistency estimate between the generators G and
G of the semigroups T}' and T7°, and we prove the corresponding stability estimate
on T7°, based on stability estimates on the (nonlinear) limit semigroup SP°. We observe
here that we need to introduce an abstract differential calculus (see Definitions 3.3 and
3.4) for functions on the space of probability measures.

It is worth mentioning that the novelty of the method here with respect to [22]
appears in the regularity (of order two, instead of order one) that we need in the
consistency estimate (see Assumption (A3)) and the corresponding stability estimate
(see Assumption (A4)). This comes from the fact that the Landau equation possesses a
different diffusive structure than the Boltzmann equation, which is treated in [22].

3.1. Abstract framework. Consider a Polish space E and we shall denote by P(E)
the space of probability measures on E. Consider also E”V and the space of symmetric
probability measures Psym(E™), more precisely, we say that FV € P(EY) is symmetric
if for all ¢ € Cy(EYN) we have that

/ (,deN:/ 0o dFN,
EN EN

for any permutation o of {1,..., N}, and where
Po = QO(VU) = SO(UG(I)a cee 7UU(N))7
for V.= (vy,...,on) € EN.

N -particle system framework. We consider the trajectories V¥ € EN, t > 0, of particles,
and we assume that this flow commutes with permutations (which means that particles
are indistinguishable). To this flow in EN corresponds a semigroup StN that acts on
Psym(EN ) for the probability density of particles in the phase space EN , which is defined
by

B1) VY € Pyn(BY), e GEY), (SN(RY).0) = E(e))),

where the bracket denotes the duality between P(EY) and Cy(EY), and E is the
expectation associated to the space of probabilities in which the process V} is built, in
other words FN := SN(FY) is the law of V. Since the process (V}¥); commutes with
permutations, the semigroup S acts on Psym(EY), which means that if the law FZ¥
of V¥ lies in Py (EY) then the law F}Y of V] also lies in Py (EY) for later times.
We associate to the cp-semigroup S on Psym(EY) a linear evolution equation with
generator AV
OFN = ANFN N ¢ P, (EY),

which is the forward Kolmogorov or Master equation on the law of (V}V).
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We also consider the semigroup 7} acting on the function space Cy(EY) of observables
of the evolution system (V}); on EV, which is in duality with S}¥ by

(3.2) VEN € Py (BY), 0 € G(BEY), (FY,TM(p)) = (SN (FY), 0).

To the co-semigroup T}¥ on Cy(EY) we can associate a linear evolution equation with
generator GV by
Orp = GN(P? ZBS Cb(EN)a

which is the backward Kolmogorov equation.

Limit mean-field equation framework. We consider a (nonlinear) semigroup S;° acting
on P(F) associated to an evolution equation and some operator (). More precisely, for
any fo € P(E) (and here we may assume additional bounds), we have Sg°(fo) = fi
where (ft)i>0 € C([0,00); P(E)) is the solution of

(33> 8tft = Q(ft)7
with initial data f;—o = fo.

We consider the associated pullback semigroup T;° acting on Cy(P(E)) by
(3.4) VfeP(E), ®cCG(P(E)), To[@(f) =2(57(f)).

Remark that 77 is linear as a function of ®, but in general 7°°[®](f) is not linear as a
function of f.

We associate to the semigroup 7;7° the following linear evolution equation with some
generator G,

8P =GP, e Cy(P(E)).

We refer the reader to [22, Remark 2.1] for a heuristic explanation of the physical
interpretation of the semigroup 7;7°: the semigroup of observables of the nonlinear
equation (3.3).

As explained above, we define some applications relating this objects in order to be
able to compare the two dynamics. We define the application 7% : EV /&y — P(E),
where G denotes the group of permutations of {1,..., N}, by

(35 V) =l = 36
and ,ug is called the empirical measure associated to V. We introduce moreover the
map 7Y : Cp(P(E)) — Cp(EN) given by
(3.6) VV e BN, VO e Cy(P(E)), w7 [@(V):=(®omy)(V) = 2(u}).
Then we define the application 758 : Py (EY) — P(P(E)) by
VY € Py (EY), V& € Cy(P(E)),

3.7
0 (e (PY). @) = (PY @) = [ eGPV av),
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where the first bracket is the duality P(P(FE)) <> C,(P(F)) and the second one is the
duality Psym(EY) <> Co(EY). Finally, the map RY : Cy(EYN) — Cy(P(E)) is defined by

Vo e Cy(EN), V feP(E),

RN[gI(f) 1= (ip, FN) = / S(V)f(dvn) - f(do),

E‘N

(3.8)

and in the sequel we denote Rﬁ, := R’[¢] for ¢ € Cy(E*). The functions Rf; are the
“polynomials” on the space P(FE), we will see later (Example 3.6) that they are continuous

and differentiable in the sense of Definitions 3.3 and 3.4, where we develop a differential
calculus on P(FE).

For a given weight function m : F — R, we define the N-particle weight function
MY by

N
(39) WV = (v1,on) € BN, MNW) ;:;]Zm(ui):wy,m:Mm(usV).

Definition 3.1. For a given weight function mg : E — R we define the subspaces of
probability measures

Pg :={f e P(E); (f,mg) < oo}
and the corresponding bounded sets, for a € (0, 0),

BPg . :={f € Pg; (f,mg) <a}.

For a given constraint function mg : £ — R” such that (f, mg) is well defined for any
f € Pg and a given space of constraints Rg C RP, we define, for any r € Rg, the
constrained subsets

Pgr:={f € Pg; (f,mg) =r},
the corresponding bounded constrained subsets

BPg,a,r = {f € BPg,a ; <fa mg> = I'},

and the corresponding space of increments
IPg :={g— f; Are Rgs.t. g,f € Pgr}.

We shall consider a distance distg which is either defined on the whole space Pg or
such that there is a Banach space G D ZPg endowed with a norm || - ||g such that distg
is defined on Pg, for any r € Rg by

diStg(g, f) = ”g - f”ga vag € Pg,r-

Definition 3.2. We say that two spaces F and Pg, where F C C,(E) is a normed
vector space endowed with the norm || - ||z and Pg C P(E) is a subspace of probability
measures endowed with a metric distg, satisfy a duality inequality if

(3.10) VfgePg, VoeF  [{f—g 9| <distg(g, f) llellF,

where here (-, ) corresponds to the usual duality between P(E) and Cy(E). In the case
in which distg is associated to a normed vector space G, this amounts to the usual
duality inequality [(h, )| < [|h[|g [|¢]| -
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Definition 3.3. Consider two metric spaces gl and 52, some weight function A : Gi —
[1,00) and n € (0, 1]. We denote by Cﬁ’"(gl; G2) the (weighted) space of functions with
n-Holder regularity, that is functions S : G — G such that there exists a constant C' > 0
so that

(3.11) VigeG, distg (S(f),8(9) < CAlg, f) distg, (f.9)".
where A(g, f) = max{A(g), A(f)}.
We define then a higher order differential calculus.

Definition 3.4. Consider two normed spaces g1 and Go, two metric spaces Q1 and Qz
such that G; — G; C G;, some weight function A : G; — [1,00) and 7 € (0,1]. We denote
by C A’"(gl, Gs) the (weighted) space of functions two times continuously differentiable
from G; to 52, and such that the second derivative satisfies some weighted n-Holder
regularity (in the sense of Definition 3.3).

More precisely, these are functions S : 51 — 52 continuous, such that there exists
maps (for j = 1,2) D’S : G — L£7(G1,Ga) , where £7(G1,Go) is the space of j-multilinear
applications from Gy to G2, and there exist some constants C; > 0, so that we have for
all f,g € Gy,

15(9) = S(H)llg, < CoAlg, f)llg — FII.
KDSIfl,9 — Fllg, < C1A(g, ) llg — FII,
1S(g) — S(f) — (DS[fl,9 — Fllg, < C2Alg. ) llg — fllg™,
(312 D811, 0 — D)y, < Cs Ao ) llg — L™,
2
S(g) = S(f) =D _(D'S[fl.(g— H®H| < Callg, f)llg— FII5T",
1=1 Go
where ng,m € [n, 1].
We define then the semi-norms on C’i’"(gl; 52)
I(DSf], ) g [(D>S[f1, (h, 1)) ||
S0 = —02, S| 20 1= 2
Sloy = s xSl = s T
e 15(9) — S(F)]
S 0,mp += _ = )
Slegm = S0 A g — f12
1S(9) — S(f) — (DSIf).g — )l
S| im = 2
Blopn = Mg 1) llg — F15™
HOREOES YR UNEN O

[S] 2. := sup
D e Ag, f) llg — fll5"

Finally we combine these semi-norms into

||8H012\77] = [S]Clo\,no + [S]C/l\’nl + [S]C/me + [5]011\,0 + [5]02 0

A
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This differential calculus holds for composition, more precisely for U € Cﬁ;j(él; g})

and V € C,’i;j’(@}; 53) we have S =V ol € Ci’:s (51; 53) for some appropriate weight
function Ags and exponent ns. We now state the following lemma

Lemma 3.5. Let G; be normed spaces and G; be metric spaces fori=1,2,3, such that
Gi — Gi C G;. Consider U € C2"n CyUT2/3 0 cQCT/3(G 1 Gy), with n € (0,1], and
Ve 02’1(92; Gs). Then the composition function S =V olU satisfies

S e no B0 oG Gy)

and we have

DS|f] = DV[U(f)] e DU[f],
D*S[f] = D*VU(f)) o (DU[f] ® DU[]) + DVU(f)] o DZUf].
More precisely, the following estimates hold
[Sleo.eemss < Vlgor U go.oems

[8]011\,0 < [V]Clvo [u]ciao )
[S] .20 < Vgno U] grasenss + Viea U2 oeimys
A2 A A

[Slezs < Vigro Ulgzo + Vigao U

1,0 5
A2 C’A

[Sle2p < Viewo Ulcan + [V]ezo [U]zoixmn)/:a

A3

+2[V] 20 [U]C}\*O [U]Ck(1+2n)/3 + V]p2a [Z/”?éj)\,(Q-}—n)/S .

Proof of Lemma 3.5. Let f,g € G1 and f.ge Go.
By Definition 3.4 with ¢/ € C27nCy 2130 cOCT/3(G: G,) and V € C21(Gy; Gs),

we have

U(g) —U(f) = (DU[fl,g — ) + Rli(9. f),

(319 U(g) —U(f) = (DU[f], g — f) + (DU[f], (g — £)¥*) + Riu(g, f),
with

(3.14) [(g) U, < Mgon Mg F)llg—FIG

(3.15) DULfL g = llg, < Mero Mg, ) g — I,

(3.16) ”Ru(7f)||g2 < Mlgim Mg, ) llg = Flig™
(3.17) KDZUf, (9= H*) g, < Mlzo Mg, H)llg— Fllg,™
(3.18) HRU@, Nllg, < Mlgza Mg, f)llg — fllg, ",

where, for simplicity, we denote g = (2 +n)/3 and n; = (1 + 2n)/3.
Similarly we have for V,

V(9) — V(f) = (DVIf],5 — f) + R}(3, ),

(3.19) V(g) — V() = (DVIfl,g — F) + (D*VIf],(a — /)®*) + B33, ),
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with

(3.20) V@ - V(Dllg, < Meoa 17— Fllg,
(3.21) KDV = Pllg, < Mewo 13- Fllg,.
(3.22) IR @, Hllg, < Mo 7 - fllg,.
(3.23) KD*VIF), @ = D)y, < Vigeo 17 = Flig,
(3.24) 1B @, F)llg, < e 17— Flig,-

Using these estimates we can compute the same type of estimates for S =V old. We
obtain first, thanks to (3.20) and (3.14), that

15(9) = S(Nllg, = IV U(9)) =V Uf))llg,
Vo [U(g) =U(fllg,
Vo U com Mg, llg = fllg,

IN A

which implies [S]CO»(2+77)/3 < Vlgoa [u]00,<2+n)/3'
A A
We also have, using (3.19) and (3.13),

S(g) = 8(f) =vUlg) -V U(f)
= (DVIU()],U(g) = U(F)) + Ry U(g), U(f))
= (DVIU(H)). {(DU[fl,9 = ) + Rig(9, F)})
+ Ry (U(9),U(f)),

(fgoirg)which we deduce (DS[f],g — f) = (DV[U(f)], (DU[f],9 — [))) and, by (3.21) and

{DS[f],9 = 1) llgs < VIero [ {DU[f], 9 = ]) g,
< Moro Ulgro M) Nlg = fIIG,

which yields [S]C}\,O < [V]Cl,O [U]C}\’O'
Therefore, we obtain using (3.21), (3.22), (3.16) and (3.14),

15(9) = S(F) = (DS[f],9 = Hllg,
< IKDVIU(H Rig(g, ) g, + 1By U9), UH)lg,
< Mero I1Ri(9: Nllg, + Viers [Ulg) = U()IIg,
< Mero Ulgrm Mg ) llg = fllg™ + Mea [u]éxmo Ag. /) llg = Fligr-

Since 1 +m =29 =1+ (14 2n)/3 and A > 1, the last inequality implies

2
Slengers < Mlero Ulgosmns + Mo UlZpamms .
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Finally, from (3.19) and (3.13), we have
S(g) = S(f) =V Ulg) =V U(f))
= (DVIU(D]Ulg) = U) + (DVIU()L, WUlg) = U) ™) + B U(9) U(F))
= (DY), ((DUlf g = £) + (D), (9 = ) + Bi(9.£)))
+ (v (oulsl.g - 5+ Riton) ™)

+ Ry U(9),U(S)),
which yields

(D811, (g = D®2) = (DVIL(DL ((D*U1), (9 — D)%)
+ (DL ((DUlfl g~ £))).
Hence we obtain, with (3.21), (3.23), (3.17) and (3.15),
IKD?S1£1. (9 = H**)lg,
< Mewo [KDULTL (9 = D) lg, + Mezo DU 9 = Dig,
< Wlero Ulezo Al = FIE™ + Wlgao (lero A g~ 718)°
< (Mloso Mlczo +Weao Mgo) A2 lg = Fllg 7",

which gives [8]02,20 < V]eto [U]Ci’o + V20 [U]é{l\,o.
A

Now, for the last estimate we obtain
18(9) = S(f) = (DS[fl.g = f) = (D*S[f]. (9 = H**)llg,
< KDV Big. P)lg, + |[( DV, (Blg. ) )
+2|[(D2VU)], ((DULSL, g — ) @ Rig(g. D)),
+ || B WU(9). U(f)lg,
and using the equations (3.20) to (3.24) and (3.14) to (3.18), it gives
18(g) = S(f) = (DS[f].g = 1) = (D*S[f1. (9 = £)**),
< Ve |BA(g, Hlg, + Vezo | Bita, £,
+2[V]ezo (DUf), 9 = Hllg, |1 Big, Dlg, + Meen [U(g) =U)]E,
< Vgro Mlgza Mg, ) llg — Flig)”
+ Vezo Mlgam Mg, 1) llg = fllg™"
+2Vlgzo Mlgro Mg Mg, )2 llg = fllg ™™
+ Wleza WUlgons Mg, 1) llg = FlgY-

g3
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Since 1 +n1 +n0 =3n9 =2+ n < 2+ 211, we deduce
[S]CQ,n < [V]Cl,o [U]Ci‘" + [V}CZO [Z/[]é}\,(1+2n)/3

A3

+2[V]ezo Ulgro Ulgraranss + [V [u]iﬁ*(“”)/?’ :

A

g

Ezample 3.6. Consider the pair F and Pg in duality (Definition 3.2) where F C Cy(E),
and consider ¢ = @1 ® -+ ® ¢y € F¥*. Then the application R, defined in (3.8) is in

C?*1(Pg;R). Consider f,g € Pg, then we have thanks to the multi-linearity of Rf; (see
22, 23]) that

|R(9) = RL(N| < el oy llg = Fllgs

IDRLI1(g = )] < € lellzaqzey— g~ flo,

L4 —
[8(9) ~ BL) — DRI~ | < oD llrenner 2 o - £13

(e —
D210 - 2] < 0 gl penaumys o - 113
|RL(9) — BU(S) = DRLIf)(g = f) = D*RS[f)(g — )

00— 1)(0 -2
D=2 o) pasgoeys o — £,

IN

where we define

ol Foigrocye—i = max lpirll7 - leillz T lenllze

i1,...,i; distincts in [1,€] iy i
IRREELY]

Since we shall need to endow the subspaces of probability measures in Definition 3.1
with metrics, let us give some useful examples. We denote by P,, (]Rd) the space of probabil-
ities with finite moments up to order p, more precisely P,(R?) := {f € P(R%) ; (|v|?, f) <
00}.

Definition 3.7 (Monge-Kantorovich-Wasserstein distance). For f, g € P,(R?) we define
the distance
WP(f,g):= inf / dist(z, y)? m(dx, d
P (f.9) m€ll(f,9) JRIxR4 ()" v)

where II(f, g) is the set of probability measures on R? x R? with marginals f and g
respectively.

In a analogous way, we also define, for p, v € P(P(R?)) and a distance D over P(R%),
the distance

Wapluv) = nt [ D(f.g) n(df. do)
mell(p,v) JP(RI) xP(RY)

where TI(, ) denotes the set of probability measures on P(R%) x P(R%) with marginals
w and v.
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Definition 3.8 (Fourier based distances). For f,g € P,(RY) we define the distance
(3.25) If — g|s := sup M
£eRd [3

which is well defined if f and g have equal moments up to order s — 1 if s is a integer or
|s] if not. We shall denote by H~*(R?) the space associated to this norm.

Definition 3.9 (General Fourier based distances). Let & € N* and set

mg = |v|*, mg = (V") ene» ol <k —1,
and
v = (v, 05, a=(ag,...,aq).
We define X
vieTPg  flg=Ifl=suw T e 0.
£eRd |§’

We extend the above norm to M} (R?), where we denote M!(R?) the space of finite
Radon measures and M} (R%) its subspace of measures with finite moments up to order
k, in the following way. First we define for f € M} |(R?) and a € N?, |a| < k — 1 the
moment

M,[f] = /]Rd v f(dv).

For a fixed smooth function with compact support xy € C°(R%) such that xy = 1 over
{¢€ € R |¢] < 1}, we define the function My[f] by its Fourier transform

Ml =x© [ Y Ml s o
o <k—1 ’
We define then the norm
(3.26) Al = 1f = Milflle+ D IMalf]],
|la|<k—1

|h(©)]
g[* -

3.2. Abstract theorem. We state the assumptions of our abstract theorem 3.11.

where as above |h|y, := sup;

Assumption (A1) (N-particle system). The semigroup T}V and its generator GV are
well defined on Cy(E™) and are invariant under permutation so that F}Y is well defined.
Moreover, we assume that the following conditions hold:

(i) Conservation constraint: There exists a constraint function mg, : £ — R” and a
subset Rg, C R” such that defining the set

Ey:= {V € EN; </Jg,mg1> € Rg1}

there holds
vVt >0, supthN C Ey.
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(ii) Propagation of integral moment bound: There exists a weight function mg, and a
constant Cm91 > 0 that does not depend on N, such that

YN>1  sup <FtN,Mang > < Crng -
>0 ! !

Assumption (A2) (Assumptions for the existence of the pullback semigroup). Consider
the weight function mg, , the constraint function mg, : £ — RP and the set of constraints
Rg, C R? of Assumption (A1). Then consider the associated probability space Pg,
and the corresponding space of increments ZPg, as in Definition 3.1. Finally, consider a
Banach space G1 D ZPg, such that Pg, ; is endowed with the distance distg, induced
by the norm || - ||g, for any constraint vector r € Rg, .

Assume that, for some ¢ € (0, 1] and some a € (0, 00), we have for any a € (a, c0) and
r € Rg,:

(i) The equation (3.3) generates a semigroup S;° : BPg, or — BPg, qr, which is
d-Holder continuous locally uniformly in time, in the sense that for any 7 € (0, 00)
there exists C; > 0 such that

Vf,9 € BPg, ar, sup [[57°(9) = (), < Crllg = fIIg,

0<t<r

(ii) The application @ is bounded and ¢-Holder continuous from BPg, ,r into Gi.

As a consequence os this assumption, the semigroups Sp° and 7° are well-defined as
well as the generator G*° thanks to the following result [22, Lemma 2.11] (see also [23,
Lemma 4.1])

Lemma 3.10. Assume (A2). For any a € (a,00) and r € Rg,, the pullback semigroup
T7° defined by

Vf€BPg ar, € Cb(BPQ1,a,r)a T2 [@](f) == @ (S¢°(f))
is a co-semigroup of contractions on the Banach space Cy(BPg, o).

Its generator G is an unbounded linear operator on Cy(BPFg, .r) with domain
Dom(G®°) containing C’;’n(BPgLa’r). On the latter space, it is defined by the formula

(3.27) V& € C)(BPg,ax), Vf € BPgar,  (GX®) (f) := (DD[f],Q(f)) -

Assumption (A3) (Convergence of the generators). Let Pg,,mg,,Rg, be such as
introduced in Assumption (A2). Define a weight function 1 < mg < Cmg, and the
corresponding weight A (f) := (f,mg,)-

We assume that there exist a function £(V) going to 0 as N — oo and 7 € (0, 1] such
that for all ® € N

(3.28)
H - GN7TC — T GOO)

reRg, A1 (Pgl r; R) we have

<e(N) sup (CI) 1,7 oy + [ P] ~2,0 >
L>(En) ( )rERgl [ ]CAll(Pgl’r’R) [ }CAI (Pgy riR)
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Assumption (A4) (Differential stability). Consider a Banach space Go D G1, G1 defined
in Assumption (A2), and the associated probability space Pg, as in Definition 3.1, with
weight function mg,, constraint function mg, and endowed with the metric induced
from Gs.

We assume that the limit semigroup S;° satisfies

Spo € O3 A ey A @ pg Py,

2

for any r € Rg,, and that there exists C{° > 0 such that

[o¢]
(3.29)  sup [S7°) casarzns + [S2120,0mys + 157 2o + [S°1 210 ) dt < CF°,
0 CA2 CAQ c c

I‘ERgl Ag Az

with Ag = A}/g and where n and A; are the same as in Assumption (A3).

Assumption (A5) (Weak stability). We assume that, for some probability space Pg,
associated to a weight function mg,, a constraint mg,, a set of constraints Rg, and a
distance distg,, there exists a constant C® > 0 such that for any r € Rg,,

(3.30) Vf,9€Pgyr, sup distg, (57°(f), 577 (9)) < C5° distg, (f, 9)-

Theorem 3.11 (Abstract theorem). Let us consider a family of N-particle initial
conditions FYY € Psym(EN) and the associated solution FYN = SN(FY). Consider also
a one-particle initial condition fy € P(FE) and the associated solution fi = S{°(fo).
Assume that Assumptions (A1)-(A2)-(A3)-(A4)-(A5) hold for some spaces Pg,, G;
and Fi, 1 = 1,2,3, with F; C Cy(E) and where F; and Pg, are in duality.

Then there exists a constant C' € (0,00) such that for any N,¢ € N, with N > 2¢, and
for any o = 1 @ - @ @p € FO, F:= F| N Fa N F3 we have

e (SN EY) = (SN e 1Y)

2 o
(3.31) < O |5 Iellze + Cing, CF (V) € ¢l g goeye—s

+ 0500 ¢ ||90H]:3®(L°°)5—1 Wl,gs (WJJ'YFON7 5f0)] >

where we recall that Wi g, is defined in Definition 3.7.

As a consequence, if FY¥ is fo-chaotic the propagation of chaos holds uniformly in
time and with quantitative rates in the number N of particles (depending on quantitative
rates of the chaoticity of the initial data).
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Proof of Theorem 3.11. We split the term (3.31) into three parts:

(SNEY) = (ST (f)*™ @1V

< (SME). e @1V ) — (SN (RY), R o) (=)
+ (BT (RG o)) — (Y (T°RG) o) (= 1)
(B IPR onf) = ((SE(R)™Y o1V ) (=)

and we evaluate each of them. The first term is estimated by a combinatorial argument,
which corresponds to the price we have to pay by using the injection based on the
empirical measure. The second term is where the two dynamics are effectively compared,
and in order to do so we first express the difference between the linear semigroups in terms
of the difference of their generators, which are all well-defined thanks to Assumption
(A1) and (A2) together with Lemma 3.10; then the consistency estimate (A3) on the
generators, the stability estimate (A4) on the limit semigroup and the Assumption (A1)
on the N-particle system yield a control of 75. Finally, thanks to the weak stability
estimate (A5) on the limit semigroup, the third term can be controlled in terms of the
chaoticity of the initial data.

Step 1. For the first term 77, a classical combinatorial trick (see [25], [23, Lemma 2.14],
[22, Lemma 3.3]) implies

%2H<P||Loo(E@)

|T1| < N

Step 2. We investigate now the second term T5. First of all, thanks to Assumptions
(A1) and (A2) the semigroups and generators are well-defined, and we may rewrite 7%
as the difference of two dynamics in Cy(P(E)) in the following way

7, = (B (@) — aSTP) R,
and we recall that by the definition of the generators it hold

iTSN =GNTN, iT;@ = G®T™.
ds ds

We then deduce that

bd
Tl — i1 = - |
0

df [TtZXS Wg Too]ds
S

S
t
= / TN (GN7rN — 7N G>) T>ds,
0
from which we obtain, for any ¢ > 0,

t
Ty = <Fév,/ TN (GN=l —ngOO)TSOOdsRﬁ,>
0

t
:/ <F5V,thfs (GNrl — 7T§G°°)T§°Ri> ds.
0
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Then it follows that
(3.32)

ol < [ (0 SR, (0%, ) G w8 — w6 TR as
< > N N N 007 oo pl
<sup (MY, 5P [ a6V — md G TR

< Cpg. (N sup/ [TfoRq —l—[TfORE} ds,
91 ( )reRg1 0 ( © C,{’{'(Pgl,r;R) v Ci’lo(Pgl,r;R)

thanks to Assumptions (A1) and (A3).
We fix r € Rg, and we know that the application 7 Rf; = RéoSgo and by Assumption
(A4) the limit (nonlinear) semigroup Sg° satisfies

§% e C N CA(1+277)/3 n 02’2(2+n)/3(Pg1,r; Pg,).

2
Moreover, with ¢ € }'g? we have Ri, € C%1(Pg,;R) (see Example 3.6). Finally, by
Lemma 3.5 we obtain that

TR, € Chf N Cy 7 e (g, i R)
with

2
TOORK} < RZ 2,1 . S0 a.aten/s + 15150 (2 3
[ SRl (pg R) T IRollc2ipg,m) | 150 ]CAQ( " (g, xiPg,) 15 ]CA’Q( TP, riPg,) )
5

oo pf 12 0o 0012
|:Ts ch:| 20 (g, ) < ||R@||Cza1(Pg2;R) ([St ]civzo(Pgl,r;sz) + 155 ]C}X’QO(PQIJ;PQQ)> :
2

From Assumption (A4), Ay = Ai/?’ and the estimate of ||Rf;||02,1 in Example 3.6, we
can deduce, plugging the last estimate on (3.32), that

(3.33) Ty| < Cmg1 Cie(N) ¢ H‘PH]—‘§>3®(LOO)€—3

Step 3. We rewrite the third term as

T3:/ENR (S7°(uyy)) Fo'(dv) H/‘Py ¢ (fo)(dv)

- [ s man - [ H [ [ 05 | £ av)

= [, (R (s70h) = RE (S0 B av).

We hence deduce, thanks to the Assumption (A5) and the fact that Rf; € C"Y(Pg,; R)
for ¢ € F2*, that

T3] < HRiHCOvl(P%;R)/NdiStga(Sfo(Mg),Sfo(fo))FoN(dV)
(3.34) E

< Cllplroqweyr G5 [ dista,(uls fo) FY'(@V).
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With the definition of the Wasserstein distance (see Definition 3.7), since the set
(rNFY,67,) = {mNFYN ®d5,} has only one element, we obtain

Wagy (B F05) =t [ distg, (£, 9) (df, dg)
reni(r} FY 35) J Jp(2)xp(E)

= / / distg, (f, ) 7p Fy' (df) 67, (dg)
(3.35) P(E)xP(E)

5/ distg, (f. fo) 7N Y (df)
P(E)

= [ disto . o) F (@),
EN

where we have used the definition of 75 (see Section 3.1) in the last equality. We
conclude then plugging this estimate on (3.34).
O

4. APPLICATION TO THE LANDAU EQUATION

In this section we will use the consistency-stability method presented in the Section
3 to show the propagation of chaos for the Landau equation for Maxwellian molecules.
In order to prove some estimates for the Landau equation that we need to apply the
method of Section 3, we shall prove first the same type of estimates for the Boltzmann
equation (as in [22]) with a collisional kernel satisfying the grazing collisions (2.18).
Then passing to the limit of grazing collisions we will recover the same results for the
Landau equation.

Our main theorems are:

Theorem 4.1. Consider a N-particle initial condition F)' € Pyym(R¥) and, for
all t > 0, the associated solution of the N-particle Landau dynamics FYN = SN(FY).
Consider also a one-particle initial condition fo € Pg(R?), with zero momentum [vfo=0
and energy [ |v]?fo =: € € (0,00), and the associated solution of the limit (mean-field)
Landau equation fr = S{°(fo). Suppose further that there exists & € (0,00) such that

N
1

(4.1) supp FfY C {VGRdN | N;‘Mzé&)}'
Then, for ¢ € N*, for all
p=p@ @ eFY, fF{wR“w&WW—AN+mme@<w}
and for any N > 2/, there is a constant C' > 0 such that

sup [(SM(F") = (S7°(fo)*N, 0)]

>0

2 03 N N
<C N el Loe + N”@H#@(Lm)@—iﬂ + Llellwreog(roeye—1 Wi ws (mp Fy 75f0)] .

As a consequence, if F(fv is fo-chaotic the third term of the right-hand side goes to 0
when N — 0o, which implies the propagation of chaos uniformly in time.
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Theorem 4.2. Consider the same framework of Theorem 4.1. Assume moreover that
fo € Pg(RY)NLP(RY) for some p > 1 and let F¥ = [f(?N}SN(g) € Py (SN (E)) (observe
that (4.1) is satisfied by this choice of initial data with & = £). Then it holds:

(1) For all 0 < € < 9[(7d + 6)%(d + 9)] !, there exists a constant C. > 0 such that

FN RN
SUPM S CE N*E'
>0 N
(2) For allt >0, for all N € N*
Wl(FtN77N)
— 1~ < p(t
N < p(t),

for a polynomial rate p(t) — 0 as t — oo and where ¥V is the uniform probability
measure on SN (E).

Remark 4.3. This theorem also holds (with different quantitative rates) for other choices
of initial data F({V that are fp-chaotic. In particular, if we consider fy € PG(Rd) with
compact support and Fi¥ = ((?N € Psym(RdN ).

The proof of Theorem 4.1 relies on the proof of assumptions (A1)-(A2)-(A3)-(A4)-
(A5), with a suitable choice of spaces, and then on the application of Theorem 3.11.

Furthermore, we shall prove Theorem 4.2 using Theorem 4.1 and some results from
[15, 22, 5].

4.1. Proof of assumption (A1). Consider the N-particle SDE (2.33). Since b and o
are Lipschitz, existence and uniqueness hold by standard arguments (see [24, Chapter
5]). Hence it defines a semigroup T}, we can then define its generator G = Gf (given
by (2.28)-(2.29)) and its dual semigroup S;*, as explained in Section 3.1.

We have the following lemma.

Lemma 4.4. The dynamics of the N-particle system (2.29) conserves momentum and
energy, more precisely there holds, for all t > 0,

N N
/RdN ® <Z Ui,oc) FN@v) = /RdN © (Z v,-@) FN(dV), ac{l,...,d}

i=1 i=1

and
/ e (V%) FtN(dV):/ o (|V[?) FpY (av).
RAN RAN

Remark 4.5. We can easily observe during the proof that if we consider the N-particle
system of Remark 2.1 with generator G (2.32), which is different from the system we
considered here (2.29), we have conservation of energy

N N
O <sz,2 |vi|2> = <fZV,GéVZ |vi|2> =0,
=1 i=1

however this is not true for all functions ¢ = ¢(|V|?). Then, Lemma 4.6, which is a
consequence of this lemma, does not hold for the N-particle system of Remark 2.1.
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Proof of Lemma 4.4. Let us prove the second equality (energy conservation), the proof
of the first one (momentum conservation) being similar. Consider the Landau master
equation (2.29) and ¢(V) = ¢(|V|?) smooth enough, we have then

Vie V) = (B @IVD) e = 20 (V)0
and, for ¢ # j,
v, 0v, 52 (IVI?) = 40" (IV*)viavj s
Do, 00,50 (IVP) = 49" (IV *)viavip + 20/ (IV*)da
Denoting ¢’ = ¢'(|V]?) and ¢” = ¢"(|V|?) for simplicity, we obtain

(Vi + Vi = Vi = Viip)ap = 4¢'0as + 4¢" (vi.avip + Vj.aVis = Vialis = Vjavis)
= 4¢/00p + 49" (Vi — vj)a(vi — vj)p-
Therefore we have
b(vi = v)) (Vi ([VI?) = Vi ([V[?) = =2Jvi — v (v; — v;) - 2/ (IV*) (i — vj)
= —4' (V) v — vy 72
and
G/(UZ' - UJ) (V2 ®+ v P — V’LJ()O VJde)) =

d

= Jvi —vil” Y { [lvi = 0*8as = (vi = vj)a(vi — vj)5] 4¢'das

a,f=1

+ [Joi = vj[*6ap — (vi — vj)alvi — v)) 8] 49" (Vi — vj)a (Vi — Uj)ﬁ}
Computing 77 we have
d
T =4y Z [lvi = v5[*8ag — (v = vj)a(vi — vj)5] Sas

a,B=1
= 890/’1% - Uj‘2’

and computing 15

d
Ty = 49" > [loi — v (vi — v5)alvi — v5)30as — (vi — v)a(vi — v;)3]
a,B=1
d 2
= 4¢" { Joi —v5|* = [Z(vi - Uj)i]
a=1

=0.
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Gathering previous estimates we obtain

1
b(vi = vj)(Vigp = Vi) + a(vi = vj) : (Vig + Vije = Vi = Vi)
1
= —4¢ [vi — ;" + 8¢ fvi — v |1

which implies, for all ¢ > 0,

/ SV EN (V) = / S(VI2) FN (V).

O
Lemma 4.6. Consider F' such that
| N
supp FgY c {V e R™; MM (V) = N ; lvi|? < &}
Then there holds
vVt >0, suppFY c{VeR¥;, MN(V)<&]}.
Proof of Lemma 4.6. Tt is a consequence of Lemma 4.4, with ¢(|V|?) = Livpesne,-

Consider a mollifier (p,) for n > 0, i.e. p,(x) =n~p(n~tz), with p € CX(R), p > 0 and
supp p C B1, and define ¢, = p; * ¢. Using Lemma 4.4 we have, for all n and for all
t>0,

/ oy N (V) = / o FY (V).
RdN RdN

Passing to the limit n — 0 we obtain

/ Lypsne B (dV) = / Liyps e, Fo' (dV) =0.
RAN RAN

O
Lemma 4.7. Consider Fév such that <F(fv, Mév> < Ck for k > 2. Then there holds

sup (F¥, M) < G
t>0

Proof of Lemma 4.7. Consider Ft]\[’8 the solution of the Boltzmann N-particle system
(2.8)-(2.9) with grazing collisions (2.18). Then from [22, Lemma 5.3], we obtain the
desired result for FtN’6 with a constant independent of e. We conclude passing to the
grazing collisions limit ¢ — 0. O

Consider the constraint function mg, : R* — Ry x R% mg, (v) = (|v|?,v) with the
set of constraints Rg, : {(r,7) € Ry x R% |F|2 <r < &}. We have then Ey = {V €
RN MY (V) < &} and Lemma 4.6 proves Assumption (A1i). Moreover, Lemma 4.7
proves (A1ii) with the weight function mg, (v) := (v)® = (1 + |v]?)3.
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4.2. Proof of assumption (A2). Let us define the spaces of probabilities (and the
corresponding bounded, constrained and increments subsets, see Definition 3.1)

Pg, = {f € P(RY); (f,mg,) = Ms(f) < oo},

and, for r € Rg,, more precisely r = (r,7) = (r,71,...,74), the constrained space

Pg,r = 1{f €Pg; (f,|v]2) =7, (f,va) =Tq for a=1,...,d}.
We define then for some a € (0, 00) the bounded set
BPg, o :={f € Pg,; Ms(f) < a},
and, for any r € Rg,, the bounded constrained set
BPg, ax = {f € BPg, o; (f,|v]*) =7, (fva) =Ta for a=1,...,d}.
Moreover we define the vector space
Gr:={p e Mg(RY); (p,1) = (p,va) = {p, Jv|*) =0 fora=1,....d}

endowed with the (general) Fourier-based norm || - ||g, = ||| - [||2 defined in (3.26) (see
Definition 3.9).

Finally, we endow these probability measure spaces with the distance distg, associated
with the norm | - ||g, = || - [|2- Remark that for any f,g € Pg, r, for some r € Rg,, it
holds ||f — ¢gllg, = | f — gl2, where | - |2 is the usual Fourier-based norm defined in (3.25)
(see Definition 3.8), because f and g have same momentum.

Let us state some know results. Concerning the Cauchy theory for the spatially
homogeneous Landau equation for Maxwellian molecules (2.10), we refer to Villani
[29] for a L!'(R%)-theory and to Guérin [14, 13] for a P(R%)-theory. More precisely,
if fo € P2(R%) then there exists a probability flow solution (f;);>o to (2.10), where
fi € Po(R?), that conserves momentum and energy from [14], moreover this solution
is unique from [13] or from Lemma 4.8 below. Furthermore we also have uniform in
time propagation of moment bounds from [29]. Therefore, it follows that there exists
a € (0,00) such that for any a € [a,00) and any r € Rg,, the nonlinear semigroup S;°
verifies SP° : BPg, or — BPg, ar-

We investigate now the Holder regularity of the semigroup in the following lemma.

Lemma 4.8. Let fy, 90 € P2(RY) with same momentum, i.e. (fo,v) = {(go,v), and
consider the solutions (ft)t>0 and (g¢)i>0 of Landau equation for Mazwellian molecules
(2.10)-(2.11) associated to fy and go, respectively. Then

(4.2) sup | ft — gely < [fo — goly-
t>0

Remark 4.9. Let us mention that this result can be found in [29] proving uniqueness for
the Landau equation for Maxwellian molecules. There the author indicates that we can
prove it using the known result for the Boltzmann equation for Maxwellian molecules
from [27] and then passing to the limit of grazing collisions.

Proof of Lemma 4.8. Let us split the prove into two steps. First we prove the lemma
for the Boltzmann equation then we recover the result for Landau equation passing to
the limit of grazing collisions.
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Step 1. We shall prove first the desired result for the Boltzmann equation with true
Maxwellian molecules. This result is proved in [27, 22|, but we write it for completeness
and because we want to pass to the limit of grazing collisions.

Consider the solutions f; and g; of Boltzmann equation for Maxwellian molecules
(2.1)-(2.2) with initial data fy and go, respectively, and with collision kernel b, satisfying
(2.18). Denote d° := ¢ — f¢ and s° := g° + f¢, then the equation satisfied by d¢ is

1
O = 5| Quo(s", ) + Qu o, 57)|.

Performing the Fourier transform (see [2]) and denoting D® = de, S¢ = §°, we have

R R e e

- D€<§>] do

where £ = 502, ¢~ = &% and £ = ¢/j¢|.
We recall that b, is not integrable so we perform the following cut-off, which will be
relaxed in the end,

(4.3) /Sd_l bE(0-&)do =K, b =b1p550k),

for some function ¢ such that 6(K) — 0 as K — 400, so that b. = bX + b¢. In [27, 22],
we observe that the remainder term

. e(¢eH\Qe(ec— E(c—\QE(ct
RE(¢) = /S b (o - €) [D (¢ >25 (&), Do )25 € peey] do

verifies, for any & € R? |RE(¢)| < rK|¢|?, where 1K — 0 as K — oo, and 7K
depends on the second order moments of d° and s°. Indeed, using that D®(0) =
0, D7(0) =0 for all i € {1,...,d}, S(0) = 2, and the fact that supy,<|¢ |9¢0;D°(n)| and
Supjy,|<|¢| |0¢; 05 D° (n)| are bounded thanks to the bounds on the second order moments
of d° and s¢, there holds

|DF(67)S%(&7) + D*(£7)S°(€7) — 2D°(¢)]
< |SSENID(EY) = DE(&)] + D157 (&™) — S7(0)| + [ D(7)|1S°(™))]
< Cl¢*(1 — cos0)/2,

1/2

and we conclude since b% (cos 0)(1 — cos #)'/2 is integrable.

Using that ||S¢||c < 2, we have

IO (DN < g 176 <Sur> L o8 (e + 1) d") e
Sd—1

dt |¢[? €12 T eera €17\ cemre
with
P =g (1+08),  EP=5(1-0-8).
One obtains
d |D*(§)] [ D= (&) D) | &

+ K < K sup

+r
dt |¢[? 1€]2 cerd  I€]? :
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and by a Gronwall’s lemma one deduces
1Di©) D5

< +trk.
£eRd ’§|2 £eRd |§’ :

Relaxing the cut-off K — oo one proves
(4.4) |ff = gil2 < [fo — gol-

Step 2. Since (4.4) does not depend on ¢ and the solution of the Boltzmann equation
ff converges towards the solution of the Landau equation f; (see [28]) when € — 0, we
obtain the desired result.

O

Therefore the Landau semigroup S° is C%! from BPg, or to BPg, 4r and Assump-
tion (A2i) is proved.

To prove (A2ii) we use [22, Lemma 5.5], valid for the Boltzmann operator with
grazing collisions Qg ¢, which says that there exists C' > 0 and ¢ € (0, 1] such that for
any f,g € BPg, ,r we have

QB:(f, f) — QB:(9.9)]2 < C|f — gl5,

with a constant C that does not depend on e. Finally, passing to the limit of graz-
ing collisions € — 0, we have that Q. — Qr (see e.g. [7, 28]). We prove then
Assumption (AZ2ii) also for the Landau equation.

4.3. Proof of assumption (A3). Let Ai(f) := (f,mg, ) with the weight function
myg, (v) := (v)*, where we recall that mg, = (v)®, and then consider the generator GV of
the Landau master equation (2.29).

Then we have the following lemma, which proves (A3).

Lemma 4.10. For all ® € N (Pg1 r; R) there exists C > 0 such that

C
< — sup (@]
Lo (Ey) N reRg,

I‘ERg

(4.5) H - GNTFC - 7TNG°°)

o2 O(Pgl oR)

Proof of Lemma 4.10. The application R™Y — Pg,, V = (v1,...,vn) pdY is of class
C?! with (see [23, Lemma 7.4])

1
(4.6) avi,aﬂg = Naa‘svw 812;1 Vi Bﬂj\y 82,85111

and for i # j, 02 Um,u$ =0. Let & € CA’ln(Pgl;R), so the application R*®V — R,

Vi, a0y

V — ®(ud)) is also C?7. Indeed, let ¢ = D®[udf] € G| and we have
1 1
00 () = (DB} 0 ) = { DR, 001 ) = 0u)
1 1
agi,aﬂ)i’ﬁ@(/jlv) <D(I)[ ] Nagz a,Vi 55U1> + Dz(I)[lu’g] (Naaaﬂi? N8651}2>
1 g B[dY] (Dabu;» Dpdy,) -

_ Ll 4
- Naa,ﬁd)(vz) N
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We compute, for any V € Exy = {V € R¥®; MY (V) < &},
(GNrE®)(V) = GNo(uy)

N d
= 3D balri 1)) [0 (@) — 00, (@ ()]

i,j=1a=1

N d
1
+ ﬁ Z Z aaﬂ(vi - U]) |:8gi’a,’ui75 (q)(:u‘g)) + 833',&,1)]-’5 (Q(MJ‘Y))
i,j=10a,f=1

20 (@A) = 02 (@)
= 2 Dbl ) | 0u(e) ~ 30000
N < v N e N TP
+ L Z Z aap(vi — vj) []17327@25(%) + ]1[837/3¢(vj)] (=: 1)

N d
1 1
+ o Z Z aaﬂ(vi - Uj) |:]V2D2(I)[H]\\/[] (8vi,a5w7 avi,ﬂ(svi)
t,j=la,B=1
1

N D] (00 000,0,) | (=51

+ Do) (avj,a‘gvj’avj,ﬁévj) -2

For the first term, using the empirical measure, we can write

d
- / / ; ba(v — v.) [0a(v) — Bad(v.)] plY (dv)pd (do.)

d
w3 [ 3 aunto =0 [08,50(0) + 02 s0t0)] i (o)l (o)

a,f=1
=(QL(v > 1y ), 0) = (Qr(pd), 1)), D[y ]) = (GX®)(uyy) = (mp G=®)(V),

thanks to Lemma 3.10. For the second one, using that |aas(v; — v;)| < |v; — v;]* and
i+
also [ D2®[1dY] (D, . 00;» O, 500,) | < [(I)]Ci’f(Pgl,ﬂR) Ar () |00, o 0u;llg, ", we deduce that

Vi,

there exists C' > 0 such that

N
C 1
|| < N [(I)]Ci’f(Pgl,r;R) Al(ug)ﬁ Z |vi — UJ‘Q-

ij=1
Since Ay (udY) = MY, (V) <C MY (V) and MY (V) < &, we conclude that
mgl - mgy - ’

Cg() N
2] < N [‘I)]cif(Pgl,r;R) MMQl(V)’

and therefore we prove (4.5).
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4.4. Proof of assumption (A4). In the same way of the Section 4.2, we will use here
the Boltzmann equation and then perform the asymptotic of grazing collisions to prove
the results for the Landau equation.

We define the following equations, denoting by () the symmetrized version of the Lan-
dau operator @1, for Maxwellian molecules (2.11), i.e. Q(f,9) = [Qr(f,9) + QL (g, f)]/2,

of=Q(f ), fli=o = fo,
(4 7) 8259:@(979)7 g’t:(]:g(]v
' 8th:2Q(f7h>7 h’t:(] :go_f07

Opu = 2Q(fau) + Q(hv h)v u‘tZO =0,

and the new variables

d::g_fv 3::g+f7 w::g_f_hv w::g_f_h_ua
which satisfy

ord = Q(s,d), dlt=0 = go — fo,
(48) 815&) = Q(S,'UJ) + Q(h,d), W|t:0 = O,
5t"¢ = Q(Saw> + Q(h, w) + Q(u7 d)? w‘t:O = 0.

Lemma 4.11. Consider fo,g0 € Pg, r, v € Rg,, and the solutions f;, g:,he of (4.7)-
(4.8). There exists A1 € (0,00) that for any n € [2/3,1], there exists C,, > 0 such that
we have

19t — felo < Cpe” ETPNMEM(fo + 90) % g0 — fol3,

ey < Cye” ETPMEN(fo + g0)? g0 — fol3-
Proof of Lemma 4.11. We split the proof into two steps. Again, we shall first prove the
lemma for Boltzmann equation with a kernel satisfying the grazing collisions, which is

proved in [22], and then passing to the limit of grazing collisions we prove the same
result for the Landau equation.

(4.9)

Step 1. Let us denote by ). the symmetrized version of the Boltzmann operator
QB with Maxwellian molecules (2.2) with kernel b, satisfying (2.18), i.e. Q:(f,g) =

[QB,E(fag) + QB,s(ga f)]/Q

Consider the solutions f;, gi and hj of

O fe =Q(f%,f%),  f%li=o = fo,
(4.10) Org® = Q=(9°,9°),  °li=0 = 9o,
Oh® =2Q:(f*,h%), hli=0 = g0 — fo,

and define d° := ¢ — f¢ which satisfies (where s° := ¢ + )
atde :QE(Ssvda)a d€|t=0 :90*f0~

As in Lemma 4.8 we denote D¢ = d° and S° = §°. Define D° = D — My[df] (see
Definition 3.9). Then the equation satisfied by D* is

0, D* = Q-(D?, 5%) — OuMu[d*] = Q-(D*, S°) + Qo (Ma[d], S7) — M4[Q-(d7, 5%)].
From [22, Lemma 5.6] we know that, for any ¢ € RY,
Qu(Mald], %) = Ml (", 5°)]| < CIe[* 3 IMalf* = o],

|| <3
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and also, from [26, Theorem 8.1], that there are constants C,d > 0 such that for all ¢ > 0
D IMa[ff — gill < Ce™® Y [Malfo — goll.

laf<3 o <3

Then, following [22] and performing the same cut-off as in the proof of Lemma 4.8,
we have that

d1D| L |D* oy Ko 6 (e 1 e
K=< |5 : bE (o - d
aifer e S (J?ﬁ? I£I4> (;ﬁé’/s Ko e ier) f’)

B RE
Ce [ 3 Malfo — o)l | + Bl

4
ol <3 €

(4.11)

where the remainder term
RE© = [ 1606 |309€057 () + 3 D(E)S(EN) - D7(9)| o
gd-1

satisfies, for any ¢ € R, |RE(¢)| < rKi¢*, with KX — 0 as K — oo, and rX depends
on the fourth order moments of d® and s. Indeed, we have

|D*(£%)S°(¢7) + D (£7)S°(6F) — 2D(9)]
< |SE(ET)IDE(ET) — DE(E7)| + |DE(€)]|S°(&7) — S5(0)] + [D(7)[[S° (£ 1))
< Cl¢l*(1 — cos0)/2,

where we use that V?Dg(()) = 0 for all multi-index |a| < 3 and also that supy,<¢ Vg‘DE(n)

and supy,|<j¢| Vg S°(n) are bounded for |af = 4 thanks to the bounds on the fourth mo-

ment of d° and s°. As in Lemma 4.8, the claim follows since b¢ (cos8)(1 — cos 8)'/? is

integrable.
We denote

M= [ e G (€ 11 do= [ 0G0 63 (140 82) do
and we compute

)\K—K:—Q/Sd_lbf(a-é) (1—(0-5)2)da
L /S belo-€) (1 (0 €?) do = —A. € (~0,0)

S
K—o0 2

X e (—00,0).
e—0

One can now apply Gronwall’s lemma to obtain

|D | e ot _e(/\K—K)t
P epi < €T \5|4 o X s By
£cRd 5eRd la]<3
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Then relaxing the cut-off K — oo and choosing 0 < A < min(d, \.) one has (remark that
A depends on ¢)

2 xt | D5l
(4.12) sup —— < Cle sup — - + E |Ma[fo — gol

Using a standard interpolation argument [22], one obtains
(4.13)

9= fla<lg—f—Malg—fll,+C | D [Malg - £

laf<3

<Ng—F—Malf = gllf21g— f = Malg— Al +C [ X [Malg - 1]

o] <3
< C My(fo+ go) e~ M1
Finally one concludes by writing
1—
l9i = fils < lof = fi 3 19f = fi12"
< Cpe” DM My(fo + 90)' " g0 — fol3

where we have used the last estimate (4.13), Lemma 4.8 and the fact that Ma(fo +
g0)' " < My(fo + go)'/? for n € [2/3,1] . For h; one proves the result by the same
computations.

(4.14)

Step 2. Let us now deduce the result for solutions f; and g; of the Landau equation.
Coming back to (4.12) and choosing 0 < A; < min(§, \), where A. — X € (0,00) as
e — 0, we recover (4.14) with the exponent A\; which does not depend on ¢. Hence,
passing to the limit € — 0, we have ¢ — f* — g — f and then

9t — fela < Cpe” BTN (o + g0)' g0 — fols.

Rigorously, we write

lge — fela < gt — gil2 + | fr — file + |9t — fil2,

then for the third term on the right-hand side we use (4.14) with exponent A\; that does
not depend on ¢, and for the other two terms we use that g; weakly converges towards
gt in L1 (see Villani [28]), hence |g; — g5|]2 — 0 when ¢ — 0 and we deduce

gt — fil2 < Cy e WDME M (fo + g0)'3 g0 — fol3-
O
Lemma 4.12. Consider fo, g0 € Pg, r, r € Rg,, and the solutions fi, g¢, he, wy and uy

of (4.7) and (4.8). There exists \y € (0,00) that for any n € [2/3,1], there exists Cy,
such that we have

lge — fi — hely < Cy e~ I=MME N (fo + 90) Y2 g0 — fols ™"

(4.15) ,
luly < Cp e BTN (o + g0) 3 g0 — fols "
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Proof of Lemma 4.12. Let us split the proof into two steps.

Step 1. As in Lemma 4.11, we consider ). the symmetrized version of the Boltzmann
operator Qg . and the solutions ff, ¢gf and hf of (4.10).
Consider also u; solution of

(4.16) Ou® = 2Q:(f%,u°) + Qe (h%, h), u|i=o = 0,
and define w® := ¢ — f¢ — h® which satisfies
Qw® = Q=(s°,w°) + Qe (%, d°), w®t=0 = 0.
First of all, we remark that w; has moments equals to zero up to order 3. Indeed, let
us prove that, for a € N¢,
(4.17) Vil <3, My(wp):= /Rd v* wi (v) dv = 0.

Following [22, Lemma 5.8] we know that for Maxwellian molecules the a-moment of the
Boltzmann operator Qg (g, h) is a sum of terms given by the product of moments of g
and h, then we obtain

(4.18)
d
Ylo| <3, — Ma(wf) = > as Ma(w) Ma—p(s5) + > _ aa,p Mp(h§) Ma_g(d5)
BLa B<La
and we deduce that
d 13 13 g
(4.19) V]al <3, %Ma(wt) = Z aa,s Mg(wi)Ma—p(s;)
BLa

because for all || < 1 we have M, (h) = M,(d;) = 0. We conclude to (4.17) by the
fact that wyp = 0. Therefore |w®|4 is well defined and we do not need to ”take-off the
moments of w®”. X

Let us denote Q° = &° and H® = h®. We perform then the same cut-off as in Lemmas

4.8 and 4.11 and we have the following equation for wy

(4.20)
IO 1)

af e 5
- ki o (EENNSEN NS ED
: feﬂgi/Sdle( 5)< g T e )d (= 1)
koo oy (EEEDIDNE] | HAENDED
/sm be (o 9( g " G >d (= 1)

1
+ — sup
2 fERd

|RE|
€1+

where the remainder term
1 - _ _ _ _

RE(€) = /S L V(o) [27(€)S7(ET) + (€T SEN) + HE(ET)D(§7) + HA(€7)DU(¢M)] dor

satisfies, for any ¢ € R4, |RE(¢)| < rEi€*, with 7K — 0 as K — oo, and rX depends

on moments of order 4 of d°, s°, h® and w®. To see this, we argue as in Lemma 4.11,

using that w® has vanishing moments up to order 3, see (4.17).

_|_
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We compute first T using the fact that ||S¢]| <2

|Q£(£)| K £ F+14 F— 14
b . + d
Tl S (;215 |£|4 );551 /Sdl £ (U f) (|€ ‘ ‘f ‘ ) o

€2°(§)|
< Ak sup .
ngRd |§’4

where Ak is the same that in the proof of Lemma 4.11. Next, we compute 15

HE(8)] D°(©) K, 2 (|s+|2r£—12>
b . = |d
TQS(?&@ G )(ﬁ P )J’/s SO\ g ) v

< Wibldily sup [ ¥(o-€) (1-0-€) do
(eR

d Jgd—1

< A e AN (fo + 90) 7 |hol ol dol?

where we have used the estimates of Lemmas 4.8 and 4.11, and A, is defined in (2.18).
After these computations we obtain

IO, @] ()
TR AT

and by Gronwall’s lemma

G]

£eRd |f|4

+ A e TN MY (fo + go) 7 Idoly T + rE

K —=Axg —(1=n)A

+rk 71 — e .
© K- Ak
Finally, we conclude by relaxing the cut-off parameter K — oo and choosing (1—n)\ €

(0, \c) where ). is the same as in Lemma 4.11, therefore we have

(4.22) Wi, < Cp Ae e T"DA ML (fo + g0) ™ |go — fola -

e~ (=X _ (Ok—K)t
< Ae Mu(fo+ g0) " |doly ™" (

(4.21)

We obtain the same estimation for ug.

Step 2. Consider the solutions f, g and h of (4.7) .

Let us choose A1 such that 0 < (1 —n)A; < A, where A\. — X € (0,00) as € — 0. Then
we recover (4.22) with the exponent A\; that does not depend on e. Hence, passing to
the limit ¢ — 0, we have ¢° — f¢ — h® — g — f — h (grazing collisions limit [28]), and in
the right-hand side of (4.22) we have A; — A € (0,00) (see (2.18)). Then it follows

gt — fr — hula < Cy Ae™CTPMEML (o + o) g0 — foly ™.
O

Lemma 4.13. Consider fy, g0 € Pg, v, r € Rg,, and the solution ¢, of (4.8). There
exists A\ € (0,00) such that for any n € [2/3,1], there exists C, such that we have

(4.23) l9e = fo = hu = wilg < Cpe” MM (fo + g0)'3 g0 — fol3T"
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Proof of Lemma 4.13. We prove the lemma in two steps.

Step 1. Consider the solutions ¢, ff and hf of (4.10) and u§ solution of (4.16). Define
Vi = g; — ff — hi — uj that satisfies

O = Qe (55, ¢°) + Qc(h°,w) + Qe (u", d°), " li=0 = 0.

First of all, let us prove that ¢y has moments equals to zero up to order 5, more
precisely, for o € N¢,

(4.24) Via| <5, My(y;) = / v* Yy (v) dv = 0.
Rd
In fact, as in the proof of Lemma 4.12, we can compute the a-moment of ¢

(4.25)

d
Via| <5, %Ma(%&) = Z aa,8 Mp(¥f) Ma—p(s7) + Z aa,8 Mp(hi) Ma—p(wyp)
B B

+ Y a8 Mp(r) Mo p(dy).

BLa

Since

Vel <2, My (h) = My(d7) =0,
a26) ol < 2. Ma () = Ma(d)

V‘Oz‘ <3, Ma(wt) = Moc(rt) =0,
we deduce that

d

(4.27) Vo] <5, = Ma(Wf) = ) aas Mp(uf) Ma-p(57)

BLa

and we conclude thanks to 19 = 0. Then |¢)%|g is well defined.
Denoting W& = ¢° and U® = 4°, we perform the same cut-off as in Lemmas 4.8, 4.11
and 4.12, and it gives the following equation for
(4.28)
d [WE(§)] [E(©)l
— + K
dt  |¢[° €14

<Lan [ <|@f<s+>||sa<s->| T dCal) PR

¢eRd €[° €1°
R HeE + QE(e— HE(E)IOE +
1 K g (1UFEDND(E)] IUE(é)HDS(F)I) .
sy [, oo (HEEE Bz e e
|RE
+
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where the remainder term
@29) RE©=5 [ 10 H[WENS €) + €IS €D + HENRA(E)

+ HA (€O (EF) + US(€)DF(€7) + U (€7)D*(¢™) |do

satisfies, for any ¢ € R, |RE(€)| < rK|¢|%, with rX — 0 as K — oo, and rX depends
on moments of order 6 of d*, s°, h®, w®, u® and ¥°. It easily follows arguing as in
Lemmas 4.11 and 4.13, using (4.27) and the bounds on moments of order 6.

We compute first T using the fact that ||S¢[| <2

1< sup S sup [ 106 (18041 do

£eRd ’§|6 £eRd

\Ij&
< oy sup O
£eRd ‘5‘

Let us analyse ag,

ok = /S b (o €) (IEF10+1671°) dor = /S (08 (14300 8) ao
and we compute

aKK:/Sdlbf(a-é)(4}3) (17(0-5)2>d0

~ 1 - _
o~ o 0 O (1 (08 dr = —ac € (-,0)
—5 @¢ (—00,0).

Next, we compute Th

HE () 27 (¢)| K A1<|s+|2rg—|4 r&+r4|s—|2>
T: b <€)= d
23(5&@ € )(55@ GE )&5/8 25 e emer )
1/ - R
< Pillely sup [ 050805 (1E71 4167 do
< Bre” DM My(fo + g0)' 7 [holy|dol

where we have used the estimates of Lemmas 4.8 and 4.12. We compute [

b= [ B O3 (€1 +1ER)do

- /gm (o8 (10 € do - /Sdl B (o &)5 (1- (0-8)?) do

A A
o he= 2 e (0,00)

K—o00
- A A

and we have the same estimate for T53.
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After these computations we obtain

O] Q] )

dt €[5 HE cerd €[

and by Gronwall’s lemma

< " 1 1—eloxmfOr)
sup < 28k Ma(fo+ g0) " |dol3 ey g e, —

+ 28" XN (fo + g0) 7 dol 5T 4+ 7K

cerd  [€[°

We conclude by relaxing the cut-off parameter K — oo and choosing (1 —n)A € (0, &.),
therefore we have

(4.30) 055 < Cy Ao e DN N (fo + go) 7 |do[377.

Step 2. Consider the solutions f, g, h and r of (4.7) .

Let us choose A1 such that 0 < (1 —n)A; < &, where & = & € (0,00) as ¢ — 0. Then
we recover (4.30) with the exponent A\; with does not depend on €. Hence, passing to
the limit ¢ — 0, we have ¢g°* — f* — h®* —u® — g — f — h — u (grazing collisions limit [28]),
and in the right-hand side of (4.30) we have A, — A. Then

e — fr — he — rel6 < Cpy Ae™ MM (fo 4+ g0)3 |90 — foly ™.

Therefore the semigroup of the Landau equation

5 e ey A BB Pg L Pg,),

2

where Pg, is defined as Pg, but endowed with the distance associated to the norm

|- llgs = Il - lls (see Definitions 3.8 and 3.9), with Ax(f) := My(f)Y/? = A1(f)"/3.
Moreover there exists a constant Cy > 0 such that one has
o
(4.31) sup / ([Stoo]cjz\,o + [S?]é1,o> dt < Cy,
rGRgl 0 2 Ao

which proves Assumption (A4).

Remark 4.14. In fact, we can deduce that

sup / ([5?]01,(1+2n)/3 + [Sfo]éx,@m/s + [S¢%] 20 + [550]201,0) dt < Cy.
0

reRg, Ag 2 Ao Ag
However, coming back to the proof of Theorem 3.11 and from the proof of (A3) in

Lemma 4.10, we observe that we only need [®]c2,0 instead of [®]c1,n + [®]c2.0, so that
(4.31) is sufficient.

4.5. Proof of assumption (A5). We define the space of probability measures Pg, :=
Py(R?) = {f € P(R?); My(f) < oo} endowed with the distance distg, = W5, and the
constraints associated to the momentum and energy: mg,(v) = (|v|?,v) and Rg, =
{(r,7) € Ry x R% 7 = |7?}, so that Pg,r = {f € Po(RY); (f,[vf*) =7, (f,va) =
7o for o = 1,...,d} for any r € Rg,. The following lemma proves (A5) with F3 =
Lip(R9).



42 KLEBER CARRAPATOSO

Lemma 4.15. Let fy,g90 have the same momentum and energy, and consider f; =
S2(fo), gt = S°(go) the respective solutions to the Landau equation with Mazwellian
molecules. Then

(4.32) sup Wa(fi, 9t) < Wal fo, 90)-

Proof of Lemma 4.15. Consider ff, g; the solutions of the Boltzmann equation with ker-
nel b, satisfying the grazing collisions (2.18) and with initial data fy and gg, respectively.
We know from [26] that

Sl>1%) Walfi,g5) < Walfo, 90)
t>

We know also from [28] that ff converges weakly in L! to a weak solution f; of the
Landau equation (grazing collisions limit). Moreover, both equations conserve energy so
we have, for all € > 0,

[1ksz@ao= [1Psw)do= [ oPhow .

Using the fact that the Wasserstein distance Wy is equivalent to the weak convergence
in P(RY) plus the convergence of the second order moment (see [32]), and writing

Walft, 9t) < Walfe, f£) + Walfi, g8) + Walge, g5 ),
we obtain passing to the limit e — 0 that Wa(f, ff) — 0, Wa(gt,97) — 0 and hence

sup Wa(ft, gt) < Wal(fo, 90).
>0
[l

4.6. Proof of Theorem 4.2. The proof is a consequence of Theorem 4.1, some results
on different forms of measuring chaos from [15] and quantitative estimates on the
chaoticity of initial data from [5].

Proof of Theorem 4.2 (1). Thanks to Theorem 4.1, taking ¢ = 2, we have for all ¢ =
$1 ® ¢ € F? that

| (o (FY) — f7%,) |
£0 lollF

1
<C <WW2 (WgFévﬁdfo) +N>7

where we recall that ||| = [(1+]€|%)|$(€)|. Then we observe that, for r > 0, applying
Cauchy-Schwarz inequality,

lf1llF = /(1 +[E0) (L + P2 111 + [¢7) /7 de

<o fasine \@(5)12)1/2 (fa+ \sr%-r)m.

The first integral in the right-rand side is the norm ||¢1 || e+~ and the second one is finite
if 2r > d. We have then H® C F for s > 6 4+ d/2 which implies
1

(4.33) sup [Ma(FY) = £7%) . < € (w% (PN 61) + N) |
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Let us denote M, = My(Ia(FN)) + My (f2?). Thanks to [15], for any 0 < a <
k(dk + d + k)1 there exists C' := C(«, d, s, M}) such that

N QN o
ML) < o (e - 5225 4 1)

N
which implies with (4.33)
W- FN QN Cak o
(4.34) 1(’5Nt) <C (WLWQ (e FY, fEN )athe + N’?) :

Now, we have just to estimate the first term of the right-hand side of (4.33).
We have from [5, Proof of Theorem 8] that for any 0 < 3 < (7d + 6)~! there exists
C = C(p) such that
Wl’WQ(ﬂgFéV,5f0) < CN—P,
We assumed that Mg(fo) is finite, which implies by construction that Mg(IIo(FJY)) is
also finite. Then, for all ¢ > 0 we have Mg(f;) finite (see [29]) and Mg(II2(FV)) also

finite (see Lemma 4.7). We can conclude gathering the last equation with (4.34), k =6
and s > 6+ d/2. O

Using this result, we can prove the second part of the theorem following [22].

Proof of Theorem 4.2 (2). We split the expression into

Wl(FtN fYN) o Wl(FtN? fLEX)N) Wl(’Y@Na’YN) w-
N = N + N + Wil fe,7),
where ~ is the equilibrium Gaussian probability with zero momentum and energy
& = [ |v|?dy. For the first term we have from point (1) that for all € < 9[(7d+6)?(d+9)]~!
there exists C, such that

Wi (EN, &N _
1(tNt )SCGNG

The second term can be estimated by [5, Theorem 18]

QN N
WI(,‘VN?PY )SCN_Q,

for some 6§ > e. For the third term, thanks to [29, Theorem 6] we have
Wi(fe,7) < I(fe = M)@)|Ipr < Ce M.
for contants C' > 0 and A > 0. Finally, putting together these estimates it follows
W1 (FtN7 ’YN)
N

Moreover, consider h,{v the Radon-Nikodym derivative of FtN with respect to vV, i.e.
hY = dF} /dyN. Thanks to [18], for all N € N* and ¢ > 0, it holds

(4.35) < CLUNT+e M),

1h = Ul pagsm g).ayny < €AY = Ul 28 () ayn):

where A\; > 0. Since F¥ = | gg’N]SN(S) and fy € Pg(R?), it is possible to bound the
right-hand side by

170" = Ul p2gsm gy aqmy < A™,
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with A > 1 that depends on fy. Hence we deduce, with ¢ : RN — R,

Wi(FY,4N) = sup S(dF™ — dy™)
llollco,1 <1 JRIN

N
' N _ N
gAdN;|vjr\dF ol

< NEV2| RN — Uiz svie)aym)
< N51/2Hhiv — 1HL2(SN(5)7dVN)’
which implies
N

Define N(t) by N(t) := A\t (2logA)~! for some § > 0. Then, choosing (4.35) for
N > N(t) and (4.36) for N < N(¢) it yields, for all N € N* and ¢t > 0,

W < p(t) = min {C’é (N(t)fs _'_ef)\t) ’e*%lt},

with a polynomial function p(t) — 0 as t — oo.

(4.36) < ANe Mt

5. ENTROPIC CHAOS

We can define the master equation (2.29) on R or SV (€) thanks to the conservation
of momentum and energy, hence for g% € Pyym(RYY) and fV € Py (SN (€)) we have
(5.1) o(gV vy = (oV.GYe), Ve GIRY)

(5:2) a0y = (fN.6Ye),  VoeCHsV(E),
where G is given by (2.29).
Suppose that ¢g" is absolutely continuous with respect to the Lebesgue measure (and

we still denote by ¢g” its Radon-Nikodym derivative). Taking 1) = log¢”¥ in (5.1), we
obtain an equation for the entropy of gV, i.e. H(g") := Jan gNlog gN dV,

(5.3)
d N N
ad ] d
dt Rng ogg dV
1 Vigh VgV VigV VigV\ w
-y R _ . _ dv <0,
2N 4= /RdNa(v U])( A g gy o =0

since a is nonnegative.

Considering now fV absolutely continuous with respect to 4"V, the uniform probability
measure on S™V(€), and denoting by h'V := dfV /dy" its derivative, we want to obtain
the equation satisfied by the relative entropy of fV with respect to vV, given by

(5.4) H(fN ) = /SN RN log K™Y dvV.

For this purpose we could take ¢ = logh” in (5.2), but we have to give a meaning to
V;hY for a function A"V defined on SV.
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Let us consider h a function on SV (&) and we define h on RN by
V—-M(V)
£(v)

where E(V) = N"1N oy = M(V)[2, M(V) = N~L 2N v; and the functions p and
7 are smooth.

Denoting by Vgn the gradient with respect to S™V(£) and by V| the gradient with
respect to its orthogonal space (SN )L, we can decompose the gradient on RV

(5.6) Vganh =V ih+Vevh= (Vi) h+pnVenh= (V. log(pn))h+ pnVenh.

For h we can compute VJL eRY for1<i<N, as

= <deN7L . ew) ,

1<a<d

(5.5) (V) = p(EV)) n(M(V)) h <5 ) . VYV eRW,

Vi,

Vih = (8 h>1gagd
where (e;q);5 = 0ij0as € R, Hence by (5.6), for all 1 <i < N and all 1 < a < d,

Do o= (VL log(pn) - eia) b+ p1 (Venh - €;0).

Now, observing that (V  log(pn) - (ei,a — €j,a))1<a<d is proportional to (v; — v;) and
using that a(z)z = 0 for all z € R?, we can evaluate the expression

afvi—vy) (Vih = Vh)-(Vih = V;h) = (pn)? a(vi=0;)(V sy h=V g3 h)-(T sy h=V g h),
where we define
(57) VSZNh = (VsNh . ei,a)lgagd .

Since we have the following Fubini-like theorem for Boltzmann’s spheres (see [8, 5])

/RdN p(E(V))n(M(V)) A <h <g V—g(/\‘;l)(‘/)» o

~ ([ Bl aam) ( / ey A va> ,

for some functions A and B, thanks to (5.3) with h = A" and h = gV, we obtain the
equation for the relative entropy H(fV|v"V),

(5.8)

(5.9)
d
— RN log N dy™
dt SN (&)
N N N N
_ 1 Z/ a(vi — vj) Voxh™ VoW (Vexh™ Veyh AN dy™
N o Jsne) J hN hN hN hN
= —-DN(FN) <o,

and DV is called the entropy-production functional. This implies

1 1
(5.10) FHE P+ [ DY EN ds = 4 HEN ).
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Moreover for the limit equation we have [29]

iH(f) ;:jt/flogfdvzi D(f)

dt
= [ oo (S TE) (ST dan,

and then for the relative entropy H(f|vy) = [(f/v)log(f/7)v(dv) we obtain

(5.11) H(fu) + /0 D(f.) ds = H(fol).

We are able now to prove the following result, which will be useful in the sequel.

Lemma 5.1. If FN is f-chaotic, then

1
H(f|y) <liminf — H(FNAY) and D(f) < liminf — DN(FN)
N—oo N N

N—oo

Proof of Lemma 5.1. The lower semicontinuity property of the relative entropy is proved
in [5, Theorem 21], thus we prove only the second inequality.
Let us denote V1o = V] — Vg, vsll\é = VS{V — Vsév, and for all z,y, z € R? we denote

a(z)zy = (a(z)x) - y. Since a is nonnegative, considering a function ¢ : R?? — R%, we
have

a(vy — v2) (Vlz log f1f2 — %) <V12 log f1f2 — g) >0,

which gives the following representation for D(f),

D(f)=, sup // a(vy — v2) V1210gf1f2) q f1f2 dvy dvs

ap :R2d—Rd

5 sup / ~Vis - (a(vr — va)p) — a(v) — vy) 2 } f1f2 dvy dvg
@RQdHRd

where f; = f(v1) and fo = f(v2). Let € > 0 and choose ¢ = ¢(v1,v2) : R2 — R? such
that

)—e< = / —Viza(a(vr — v2)e )—a(vl—UQ) } f1f2 dvy dvs.
For the N-particle entropy-production D” defined in (5.9), we have by symmetry
Lpn (FN)
N

SR - Vsp b Vph\ (VephT VeyhTY Ly
TONZ 2 T TN hN hN KN 7

N(N -1
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and then liminf oo N"LDN(FN) > liminf oo DIY(FN). For & : RN — R4, & € C},
we have, with FV = pN~N,

1
DN(FN) = 2/SN a(vy — Ug)vslz\é log AV - Vsn log N b dyN

1

=_—  sup / a(vy — v2) (VSN log hN® — <I><I>/4) AN dy N
2 pRIN 4Rd JSN 12

_1 _ Ng 7N _ 20 N

= —sup a(vy —v2)Vgnh™ @ dy a(vy — vg) hY dy™ b
2 SN 12 SN 4

Choosing ®(V') = ¢p(v1,v2) we obtain, using (5.7),

1 1
D{\é(FN) > — a(vy — vg)VSNhNgod’yN - = a(vy — vg) hda v d’yN
2 SN 12 2 SN 4

(5.12)

v

d
1
= Z Vnh? - [(e1,0 — €2,a) aap(vi — v2) @3] dyN
2 SN
Q,le
1

_ 1t _ PPN 5 N
2/$Na(vl v2) 1 hY dvy™.

We need an integration by parts formula for the first term on the right-hand side, thanks
to [5, Lemma 22|, for a function A and a vector field ¥, we have

AN -1)—1

/SN {VSNA(V) (V) + A(V)divgy U(V) — —

AV)U(V) v} N (V) =0,

with

N d N d
. . 1 vj,
(513)  divexy U(V) =div¥(V) -~ & ,E, > 0, W (V) — §4 >V VU H;‘@
Taking U(V') = (e1,a — €2,a) @ap(v1 — v2) pg Wwe obtain

SN vSNhN ’ (el,a - 62,a) aaﬁ(vl — UQ) 2] d’yN
: d(N-1)-1
= — /SN N divgn [(61,a — ez,a) aap @5] dyN + (dN) /SN N GaB 03 (61@ . 62,0) . Vva.

Since (e1,4 — €2,4) - V = (V1,0 — V2,o), When performing the summation o, 8 =1 to d in
the second term of the right-hand side of last equation, we obtain

RN a(vy — v2)(v1 — va) @ dy™N = 0.
SN
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For the first term, thanks to (5.13),

d
Z /N hN diVSN [(61704 - 62,04) Qap 905] d/yN
S

a,f=1
= Vi - (a(vi —v2) @) v va
SN
d
1 N N
- VP Jsn {v1- Vi(aas o) +v2- Va(aas pp)} (V1,0 — v2,a) ™ dy
a,B=1

Getting back to (5.12) with last expression, we split the integral over (vi,v2) and
SN (v1,v9) := {(v3,...,vn5) € RUN=2): VV € SN} use that [V|?> = EN and fSN(vl v2) RN dyN =
F}V, which yields

(5.14)
1 1
Dll\é(FN) > —2/ Viz - (a(vi —v2) @) F2N(U1,U2) dv dvg — 3 // a(vy — v2) % FQN(Ul,Ug) dvy dvy
d
1 N
+0 <N> Z // {v1 - Vi(aas pp) +v2 - Valaas ps)} (V1,0 — v2,a) Fy' (v1,02) dvy dvg.
a,f=1
Passing to the limit N — oo, since FQN — 92 we obtain
.. 1
hmlnf D{\é(FN) Z - / {—Vlg . (a(vl — 1)2)(,0) — a(v1 — Ug)%} f1f2 d'l)1 d'UQ Z D(f)—z’f
N—oo 2 4

and we conclude letting ¢ go to 0.
O

We define the Fisher information of G € P(R%) that is absolutely continuous with
respect to the Lebesgue measure by

2
1(G) ::/ Mdy
RaN G

Moreover, for a probability measure F' € P(S™V(€)) absolutely continuous with respect
to vV, we define the relative Fisher’s information by

Vnh|? dF
5.15 I(FIyY :_—/ Ll dyN, h=—,

where Vgn stands for the gradient on SV (&).
We can now give the following result.

Lemma 5.2. Let FY¥ € Psy (SN (E)) with finite relative Fisher information I(FYN|yY).
For all t > 0 consider the solution F}¥ of the Landau master equation (2.29). Then we
have

I(FN YY) < I(E ™).

Proof of Lemma 5.2. Denote hY := dF¥ /dyN and, for all t > 0, b)Y = dF}N/dyV.
Consider h}¥ defined on R given by (5.5) and define then F}¥ = h)¥.Z a solution of
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(5.1), where . is the Lebesgue measure on R, Following [22, Lemma 7.4], we claim
that is enough to prove that

_ V|2 hV|2 _
I(FN) = / Vean b < / Neanhg |7 4y I(FM).
RN R RN RYY
Indeed, this equation, (5.6), (5.8) and the conservation of momentum and energy yield

N |2
B(p(€), n(M)) dE dM) ( / Vvt " va>

N(g) hiV

IEN) = [V, log(pn)? + ( /

+x R4

< |V log(pn)® + (/R

which implies, dropping the time independent terms,
I(EN YY) < I(FY ).

Now, let FY € Py (SN (£)) be the solution of the Boltzmann master equation (2.8)-
(2.9) with collision kernel b, satisfying the grazing collisions assumptions (2.18) and
initial datum FY € Pyym (SN (£)). Then we have from [22, Lemma 7.4], for all t > 0,

+x R4

N2 _
B (p(&),n(M)) dé’dM) (/SN(& de> = I(F),

where ﬁ({v , th]\é € Psym(RdN ) are constructed as before.

Since ﬁt]\é weakly converges towards ﬁtN when ¢ — 0 and the Fisher information
functional is weakly lower semicontinuous, we obtain

I(EN) < liminf I(FY) < I(FY)
e— ’

and that concludes the proof.
O

Now, with the definitions of relative entropy (5.4), relative Fisher information (5.15)
and the notion of entropic chaos, described below, we are able to state our main theorem
of this section, concerning the propagation of entropic chaos.

Let FN be a sequence of probability measures SV (€) such that F}¥ weakly converges
to f in measure sense, for some f € P(R%). We say that FV is entropically f-chaotic if

N|,N
HEDD s nsio).
N—o0

For more information on entropic chaos we refer to [4, 15, 5.

Theorem 5.3. Let fo € P(RY) and FYY € Pym(SN(E)) that is fo-chaotic. Consider
then, for all t > 0, the solution F}N of the Landau master equation for Maxwellian
molecules (2.29) with initial condition Fév, and the solution fi of the limit Landau
equation for Mazwellian molecules (2.10)-(2.11) with initial data fo.
Then we have:
(1) If Fév is entropically fo-chaotic, then for all t > 0 F}N is entropically f;-chaotic,
more precisely

(5.16)

1
~ HEWY) — H(fily) as N o0
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(2) Consider fy € Pg(R?) with I(foly) < oo and FY = [fgz)N]SN(g) € Pym (SN (€)).
Then, for all t > 0, F} is entropically f;-chaotic, more precisely, for any
0 < e < 18[5(7d + 6)2(d + 9)] ™! there exists a constant C := C(g) > 0 such that

sup | H(FNy"Y) = H(fely)| < ON~*.

>0 | N

(3) Consider fo € Pg(R?) with I(foly) < oo and FY¥ = [fégN]SN(g) € Py (SN (€)).
Then for all N it holds

1
S HEM ™) < plo)

for some polynomial function p(t) — 0 as t — oo.

Proof of Theorem 5.3 (1). The idea is from [22]. Using (5.10), (5.11) and the entropic
chaoticity at initial time, one has

1 ! 1
F AN+ [ 5 DYEN s = LY

N—oo

s H(foly) = H(fil) + /Dfs

By Lemma 5.1 one also has

1}@£f( /N FY >>Hftlv /Dfs

and we can conclude with these two last equations together with Lemma 5.1.
O

Proof of Theorem 5.3 (2). From Lemma 5.2 we know that, for allt > 0, N~ I[(FN|yV) <
N (EN|YN) and the later one is bounded by construction [5], we deduce then that
the normalised relative Fisher’s information N ~1I(FN|y") is bounded. Since the limit
Landau equation for Maxwellian molecules propagates moments and the Fisher’s infor-
mation’s bound [29, 30], we have, for all ¢ > 0, Mg(f;) and I(f|y) bounded.

We can then apply [5, Theorem 31] to F}¥ and we obtain that for any 8 < (7d + 6)~*
there exists C' = C’(f) > 0 such that

N QN
CHE ) - H(ftm\ < (WQ(FWW " N—ﬁ) .

We have then to estimate the first term of the right-hand side. From [15], the following
estimation holds,

1/10 2/5
(5 17) WQ(FtN7 ?N) <C MG(FtN7 ®N) Wl(FtN7 t )
: N N N

where Mg(EN, fEN) = Me(EN) + Mg(f2V). We observe that N~ Mg(EN, f&V) is
bounded since N~ Mg(fZN) = Mg(f;), N~*Mg(F}N) < C N~ 'Mg(FY) by Lemma 4.7
and N~1Mg(FLV) is bounded by construction, thanks to the assumption Mg(fo) finite.
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Finally, Theorem 4.2 and last equation (5.17) imply that for any e < 9[(7d+6)?(d+9)]~*
and any 3 < (7d + 6)~! there exists a positive constant C' = C(e, 3) such that

(515) & HE ) — H(fib)

<C (N*QE/E’ + N*ﬂ> :
which concludes the proof.

0

Proof of Theorem 5.3 (3). By the HWI inequality [32, Theorem 30.21], for all £ > 0, we
have

H(ENY) _ 7 JIE YY) Wa(FY, 4™
N -2 N VN )
From Lemma 5.2 we have N~ (FN|4NV) < N7U(FN|4Y) < C for some constant C > 0

independent of N, by construction. Moreover, thanks to Lemma 4.7 and (5.17) we
deduce

W2(FtN7’7N) <C (Wl(FtN77N)>2/5
VN N |

Gathering these two estimates with point (2) in Theorem 4.2 it follows

N /5
H (}t "YN) ”1(} tN:VN) ?
— _— <

N =C N <p(t),

for a polynomial function p(t) — 0 as t — oo.
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