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ABSTRACT. We consider the parabolic-parabolic Keller-Segel equation in the plane and
prove the nonlinear exponential stability of the self-similar profile in a quasi parabolic-
elliptic regime. We first perform a perturbation argument in order to obtain exponential
stability for the semigroup associated to part of the first component of the linearized
operator, by exploiting the exponential stability of the linearized operator for the parabolic-
elliptic Keller-Segel equation. We finally employ a purely semigroup analysis to prove
linear, and then nonlinear, exponential stability of the system in appropriated functional
spaces with polynomial weights.
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1. INTRODUCTION

In this paper we are concerned with the parabolic-parabolic Keller-Segel system in
self-similar variables in the plane

of =Af+div(pzf — fVu)

(1.1) 1
Oyu = E(Au + f) + pz - Vu,

with fixed drift parameter p > 0 and with small time scale parameter € > 0, which aims
to give the time evolution of the collective motion of cells (described by the cells density
f = f(t,x)) that are attracted by a chemical substance (described by the chemo-attractant
concentration w = u(t,z)) they are able to emit ([24, 17]). Here ¢ > 0 is the time variable
and z € R? stands for the space variable. We refer to the work [6] as well as to the reviews
[15, 26] and the references quoted therein for biological motivation and mathematical
introduction.

We establish in a convenient weighted Sobolev space the exponential stability of the
normalized self-similar profile in the quasi parabolic-elliptic regime, that is for small values
of the time scale € > 0, without assuming any radial symmetry property on the initial datum.
This extends similar results obtained in [8] in a radially symmetric framework. As in that
last reference, the proof of the stability is based on a perturbation argument which takes
advantage of the exponential stability of the self-similar profile for the parabolic-elliptic
Keller-Segel equation established in [7, 11]. The proof however differs from [8] because
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it uses among other things (1) a different, and somehow more standard, perturbation
argument performed at the level of the main part of the first component of the linearized
operator instead of at the level of the whole linearized system and (2) a purely semigroup
analysis of the linear and nonlinear stability of the system.

Our result implies that in a quasi-parabolic-elliptic regime and for some class of initial
data without assuming any radial symmetry property, the associated solution to the
parabolic-parabolic KS system in standard variables (corresponding to 4 = 0) has a
self-similar long-time behavior, which in particular means that no concentration occurs in
large time and thus the diffusion mechanism is really the dominant phenomenon all along
the time evolution.

It is worth mentioning that as far as the existence problem is concerned, an alternative
possible approach has been developed in [6] where weak solutions have been proved to exist
for a very general class of initial data, see also [21, 20]. The associated uniqueness result
has been solved in [8], see also [2, 9], but the accurate analysis of the long-time behavior of
these solutions is still lacking. On the other hand, mild solutions have been proved to exist
under a smallness condition in the initial datum for instance in [3, 12, 10] with associated
self-similar behavior result in the longtime asymptotic in [23, 22, 10] or under a large time
scale parameter for instance in [10, 5].

The two, and only two, general properties satisfied (at least formally) by the solutions
of the parabolic-parabolic Keller-Segel equation are the positivity preservation of the cells
density, i.e.

and a similar positivity property for the chemo-attractant concentration u, as well as the
mass conservation of the cells density, namely

(1.2) (ft ) = (£, vE20, (b)) = | hdz.
That mass conservation (1.2) is known to be violated in some supercritical mass situation.

However, we will only be concerned in this paper with a subcritical mass framework that
we describe now.

We denote by ) = Q¥ and P = P! the normalized stationary solutions to the Keller-Segel
system (1.1), that is

(1.3) {0 = AQ + div(pzQ — QVP), Q(0) =8,

0=AP+Q+cpx- VP,
which existence, uniqueness, radially symmetric property and smoothness have been

established in [23, 4, 10]. It is worth emphasizing that we adopt here the normalizing
convention of [14] motivated by the fact that in the vanishing drift limit

Q" — Q% VPt VP’ as u—0,
where (Q°, P%) is defined by

Q) = —

(1+ |=[2)*

and thus @V is the well-known 87 critical mass solution to the parabolic-elliptic Keller-Segel
equation in standard variables (corresponding thus to = ¢ = 0). Because for any € > 0
there exists a one-to-one mapping

M (0,00) = (0,8m),  p= Me(p) = (QF),

another possible (and more standard) normalization convention should be to fix the drift
term p := 1 and to normalize the stationary solution by its subcritical mass in the interval
(0, 8m).

We next introduce the perturbation (g,v) of the stationary state (@, P) defined by
f=Q+g, (9)=0 u=P+uo,

AP’ =Q°,
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in such a way that the mass compatibility condition (f)) = (@) is satisfied. If (f,u) is a
solution to (1.1) then (g, v) satisfies the system

{ﬁtg = Ag +div(pzrg — gVP — QVv) — div(gVv)

(1.4) 1
Opv = E(AU +9g) + px - Vo,

and reciprocally. Instead of working with solutions (g, v) to (1.4) we shall rather work with
the unknown (g, w) defined by
wi=v—K*g,
where k is the Laplace kernel in the plane
1 =z
“3 TP

(1.5) K(z) := —%log\zh Vk(z) =

so that x * () is a solution to the Laplace equation —A(x * ) = Q in R2. We will therefore
consider the modified system

Org = Ag + div(uzg — gVP — QVk x g — QVw) — div(gVk x g) — div(gVw)
1
(1.6) Oyw = EAw—l-,u:E-VuH-g
+ Vi [gVP + QVk * g+ QVw| + Vk x [gVw + gVk * g]

satisfied by (g, w), that we complement with an initial condition (g, wp).

We introduce the Banach spaces X' := L7 x (L? N H') and Y = H} x (L? N H?) endowed
with the norms
1(g, w)llxe = llgllzz + llwllze + [wl g1,

(g, )y = llgllm: + [lwllze + [Jw]] g2,
where the weighted Lebesgue space LZ(RQ), for 1 <p < oo andk >0, is defined by
LY (R?) := {f € Lipe(®?); [[fllp := @) fllow < 00}, (2} = (1 + |2}/,
and the norm of the higher-order Sobolev spaces W,f’p (R?) is defined by
A ep = D IK2)E O f I
k

lo| <€

We define the homogeneous seminorm f + || f||z¢ := |[D*f||z> and we write f € H* if
| £l ¢ < co. We also denote by H, ' the duality space of H} for the scalar product (-, ->Li,
namely

lélly = sup (6, f)rz = sup ((@)°6,9) =@ ]nr,

112 <1 " gl <t
so that we may identify
H ' = {FO T divE; F € Lz}.
For k > 1, so that L% C L', we finally denote
Lio:={f €L} () =0}.
We may now state our main result.

Theorem 1.1. Let us fix p € (0,00), k > 3 and p > 2. Ther@ are €g,n9 > 0 such that
for any € € (0,e9) and any initial data (go,wp) € L%,o x (LP N HY) with ||(go, wo)|lx < o,
there exists a unique global solution (g,w) € L (X) N L(Y) to (1.6) which verifies

(L.7) 109, W)llzg= 2y + [1(9, W)l 223y S (g0, wo)l|x-

Moreover, for any A € (0, 2?”), we have the decay estimate

(1.8) I(g(®), w(t) 2 < e MIl(g0, wo)ll e, V=0
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This result improves [8, Theorem 1.4] where similar estimates are established with the
restriction that the initial datum is radially symmetric (and satisfies additional regularity
and confinement conditions) and also improves [23, 22, 10] which deal with small initial
data and arbitrary time scale parameter € > 0. It is worth emphasizing that because
of the one-to-one mapping p +— #(u), the choice of a given drift parameter p € (0, c0)
and its associated steady state Q¥ here is equivalent to the choice of a given subcritical
mass in (0,87) for the initial datum in [8, 23, 22, 10]. It is also worth underlining that
Theorem 1.1 implies that the corresponding solution (F,U) to the parabolic-parabolic
Keller-Segel equation in standard variables (i.e. u = 0) satisfies

1 T

T
— t ~P|——= t
R(t)2Q<R(t))7 U(7$) (R(t)>’ as — 00,
with R(t) := (1 + put)'/2, and we refer to [8, Sec 1.] for further discussions.

F(t,x) ~

As said above, we shall always work with the unknown (g, w) and it is worth stressing
why the corresponding evolution system is given by (1.6). We may indeed observe that if
(g, v) satisfies (1.4) then the function w := v — k * g straightforwardly satisfies

1
ow = gAw—l—ux-Vw—i-ux-Vn*g—fo*[Vg—l—u:ng—gVP—QVn*g—QVw]
+ Vex*[gVw+ gVk*g]|.

Using that

(x __yy|)2 {zgy) —y9(y)}dy = —% 9w dy =0,

1
x-V&*g—V&*(wg):—%/|

because of the mass vanishing condition on g, the equation on w simplifies and thus (g, w)
satisfies (1.6). Equivalently, defining the operator

L(g,w) = (L1(g, w), L2(g,w))
by
Li(g,w) =Li1g+ Lipw, =12,
with
{,Cug = Ag+div(uzg — gVP — QVExg), Liow=—div(QVw),
(1.9)

1
L219 =9+ VEx[gVP+QVExg], Losw= gAw + px - Vw + Vi x [QVw],

the system (1.6) on (g, w) rewrites as
‘ (9, w)jt=0 = (g0, wo)-

In the initial Sections 2 and 3, we present some estimates on the family of steady
states (@, P) and some functional inequalities that will be useful throughout the paper. In
Section 4, we establish the dissipativity of the operator £;; and next the exponential decay
of the associated semigroup for small enough values of ¢ > 0, thanks to a perturbation
argument and by taking advantage of the dissipativity of the limit operator for ¢ = 0
corresponding to the usual linearized parabolic-elliptic Keller-Segel operator. In Section 5,
we prove in a more direct way the dissipativity of the operator Ls2. In Section 6, we
deduce then the decay of the semigroup S, associated to £ by writing in a proper accurate
enough semigroup way the two decay estimates of Sg,, and by showing that both out
of the diagonal contributions £; j, 7 # j, are small enough. The above two arguments
significantly differ from those used in the proof of [8, Theorem 1.4]. In Section 7, we finally
present the proof of Theorem 1.1 which is based on a classical nonlinear stability trick.

In the sequel, for two functions S and 7T defined on R, we define the convolution S * T
by

(S*T)(t) = /Ot S(t—s)T(s)ds, forallt>0,
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so that in particular the Duhamel formula associated to an evolution equation
g =Ag+G, g(0) = go,
writes
g =Sngo+ Sa xG.

Moreover, for A € R, we denote ey : t — e*. We also write A ~ B if A = ¢B for
a numerical constant ¢ and A < B when A < ¢B for a numerical constant ¢ > 0 and

A, B> 0.

2. ESTIMATES OVER ) AND P

We present some estimates on the steady states ) = Q¥ and P = P, that we recall
satisfy (1.3), which will be useful in the next sections.

Proposition 2.1. There ezisteg > 0 and oy > 0 such that for alle € (0,e9) and a € (g, 1)
we have:

1) (Bounds over P) For all x € R? there holds
(

2 2
(2.1) POy — el py BTl pogy < e <o,
(2.2) z-VP(z) — palz]* <z -VPz) <z VP(z) <0.
(2) (Bounds over Q) For all x € R?, there holds
. 2 - 2
(2.3) Q(2)e 5 < Q) < Q(z)eP1-) 5

Proof of Proposition 2.1. In order to prove (2.1) and (2.2), we follow the same ideas as in
the proof of [14, Proposition 4.1], but including the necessary modifications to handle the
terms depending on ¢ that appear for this new problem.
First notice that P? and P are radial functions solving the equations
APY(z) = ~Q°(x) = 8¢, P*(0) =0,

||

AP(z) 4 pex - VP(z) = —Q(z) = —8e"@ =15 P(0) = 0.

In polar variables, these equations read as

(PO)'(r) + (PO (r) = ~8e70), PY(0) = (P)(0) =0,

(2.4) (PY'(r) + C + W) (PY(r) = —8eP0-1E (o) = P/(0) = 0.
Solving these two equations, we get
(2.5) Po(r) = —8 /OT ; /Op TePO(T)dep,
r efusé p 2
(2.6) p@p;@é - ATJMwWﬂvm@.

Plugging an expansion in powers of 7 up to order 4 for P(r) in (2.4), the coefficients of
such expansion can be computed, which gives
2
r a
P(r) - pa'y = =2+ 5 + (14 L1+ ) 4 o),
POr) = =272 + 71 4+ o(r?),

P(r) = =2 + (L+ L (1 + ) 4+ or),

for any given o € (0,1). This implies that there exists ro = ro(«) > 0 such that the
following relation holds true

palr|?
2

(2.7) PO(r) _ par®

< P(r) < P'r) < P(r) <0, Vre(0,m).
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Set @ = 1 — ¢ and assume now, by contradiction, that there exists r; > 0 such that
PY%ry) = P(r1) and
p(l —e)rf?

Pir) - M

< P’(r) < P(r), Yre(0,r).

Using (2.5) and (2.6), we get
0= P(ry) — P(r1)

/7"1 1/ ( P(—r)—u(l—a)T;—uapj) drdp
—8/ ' 1/ 7’(6 (1) _ P (r)=n(1- a)B) drdp < 0,
0o pPJo

the last strict inequality being due to the second inequality in (2.7). This is a contradiction
and therefore Py(r) < P(r) for all r > 0.

On the other hand, suppose by contradiction again that there exist « € (0,1) and r, > 0
such that

2
W (ara) 1= Plra) — 22000 = po(r,
and )
Pr) — ”0‘2‘” < P°(r) < P(r), Y7 € (0,ra).

Using (2.6), we have

T (o, re) = —8 /T 1/0 Tep(T)_ua—s)é_ue%dep_ uaI;"aI

To 2 2 N
< 8/ / 7'6 o E) ’ Ms%dep_ Ma‘;a‘ = \I](OZ»raaN)'

Notice that U(a,7q,0) = P(ry). If we prove that there exist values of a such that
0¥ (v, 70, 0) < 0 then, in a neighborhood of y = 0, we would have

W (a,a) < W(a,7a, 1) < U(a,rq,0) = P(ra),

which would be a contradiction. Since there exist g > 0 and ag > 0 such that for all
(e,a) € [0,&0] X [, 1], the function

B 4(1 — r r
0,0, ¥ (ar,7,0) = 7( " ) / 3P’ Mar 1 4sr/ e Mdr —ar
0 0

= , <1n(1+7")+1+T2—1)+4€7"(1—HT2)—CKT

is less than O for all » > 0, we deduce that

0,0 (e, 70, 0) = / " 0,0,9(a,r, 0)dr < 0,
0

which leads to the desired contradiction and finishes the proof of (2.1). We may estab-
lish (2.2) in a very similar way, but using the expressions for x - VP and x - VP. We
finally prove (2.3) by taking the exponential of the estimate (2.1). O

Lemma 2.2. There exist some constants C; > 0,1 =0,...,3, g9 >0 and 9 € (0,1), such
that for any p € (0,00) and any € € (0,e9], there hold

(2.8) 0< Q(z) < Cye Ml /2(g) =4,
(2.9) s;ﬂggq; (@) [VP()| < O,

and

(2.10) |AP| < Cope + Cs(x) ™"
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Proof of Lemma 2.2. Consider the values of g > 0 and ag > 0 given in Proposition 2.1, so
that from its proof, ¥ :=1—ap € (0,1) is independent from p and €. The estimate (2.8) is
then nothing but (2.3). Computing the explicit expression for VP gives

ME\W T || pet>
VP =—e E Q(r)et = rdr,
and hence
1 || |z| 4 o 2
|[VP| < Tl Q(r )e“aTdr < m (r)y~te V=V T ray.
Taking € small enough, we deduce
1 [lal

VP < — (?">_47“d7" < Jal(z)~?,

which directly implies (2.9). Finally, writing
AP = —pex - VP —Q,
we conclude to (2.10) thanks to (2.2) and (2.8). O

Lemma 2.3. There exist some constants ¥ € (0,1), C; >0, i =1,...,4, such that for any
€ (0,00), any ¢ € (0,e0] and any x € R2, there holds

(2.11) VP! — VP| < ueC|z|,
(2.12) |APF — APY| < peCs,
i _ Ouzl?
(2.13) Q¥ — Qb < peCse™ "5,
m _79ulﬂc|2
(2.14) VQ! — VQl| < peCae™ 2

Proof of Lemma 2.3. We recall that in radial variables, we have the expressions
r1 [P -2
I'(r) :—8/ f/ el 1T rdrdp,
0 pPJO
2
T eTHES

—n(l=e) Td’po

which imply

s -2 T 72
pr_ph— (P; - /0 (P;)'e#€2d7> 4 ( /0 (P e dr — Pg)

rehT 1
:_/ 76 = /Q” e“€2Td7'dp

2
Directly from Proposition 2.1, we know that [§ Q¥ (T)e’*z rdr < [f Q°(T)rdT < 8, and
the mean value theorem gives us that

2
P B (b pp g T

§)
N)

with h(7) satisfying

2 9 2
h(r) < max{PY — p(l — &) -, P —p'r} < PP — =L

Thanks to Proposition 2.1, we deduce

ﬂuTQ

8eM™) < QO(r)e” 2
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Putting everything together, we get

_ nep?

"1 — S 1 o[p 2
pr-pp <sr [ 22 Tdpt [ [P B+ e 1Q () rdrdp
0 p 0o pJo 2

< peKr? + /O /Op |Pt — PYQ°(r)drdp,
where K is a constant independent of p and €. Integrating by parts the integral term, we
get
P2 = P < pekr® + 7 [ P2 = PEIQO(T)ar
which thanks to Gronwall’s Lemma gives '
PE — PY| < peColaf?.

This estimate together with a similar manipulation on the gradients of P¥ and P}’ gives
(2.11). On the other hand, we have

QU - Q4| = 8T Ry

2
— |Pt— P+ M6%|86h(r)

19;1.7“2

< peCalrPQ(r)e™ 2,
which is nothing but (2.13). Repeating the same process for V(Q — Q) gives (2.14).
Finally, using the equations for P# and P}, we have
A(PE — PY) = —(Q¥ — Qf) — pex - VPL.
We conclude to (2.12) thanks to (2.13) for the first term and thanks to (2.2) for the second
one. 0

3. FUNCTIONAL INEQUALITIES

We gather in this section some functional inequalities that we shall use through the
paper. First, we provide some estimates over the solution for the Poisson problem.

Lemma 3.1. There holds

(3.1) ID?k+ gll2 S llgllzey Vg € L7,
and, for k > 2, there holds
(3:2) IVE*glle S llgllrzs Y9 € Lig.

Proof of Lemma 3.1. Thanks to Plancherel identity and because & ~ |£|~2, we have

1055 % gll 2 = l1€:€51€12all 2 < 191122 = llgl L2,
what establishes (3.1). We now prove (3.2). We similarly have

(V12 ~ V|2
||Vli*g||%2 ~ /1|§|S1 |g|(§|g|d§+/15|>1 |g|(§|g|d§ =5+ .

For the second term we have
1< [15©)F € = gl
For the first term, using that g(0) = 0 because ((g)) = 0, we have
1
9(¢) = ¢+ | Deg(og) @,

and we thus obtain

L < <|21|1<P1 |D5§(§)\2> /1|§\§1 dé < 1zgli~ S llzgli S HQHQL?
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by using some classical and elementary Fourier identity and estimate as well as the
continuous embedding L2 C Li. O

Lemma 3.2. Fork >1,p>2 and 2 < q < p, we have

(3.3) IVE*glce S llgllpe, Vg€ L

~

Proof of Lemma 3.2. We split |Vk| := K; + Ks, with

1 1
Kl = ﬂ1|m|<1 S Lr17 v7’1 < 27 K2 = ﬂl\z|>1 € LT27 VT'Q > 27
x - x -

that we use with r; := (1 + % — %)*1 and ry := p. We then have

Ve flloe < [ Ky flle + ([ Ko+ fllze
< Kz 1f e + (K2 2ol £l 2
<

11z,

where we have used the convolution embeddings L™ * LY C LP and L' * L? C L? in the

second line as well as the Cauchy-Schwarz inequality in the last line in order to prove
LI c L. O
k

We recall the following two particular cases of the Gagliardo-Nirenberg interpolation
Theorem in dimension 2.

Lemma 3.3. (1) For any p > 2 and setting 6 = we have

_p_
2+p’
(3.4) IVwlize < Il IV*wlz2,  Vwe LPnH?.

(2) The following Ladyzhenskaya’s inequality holds

(3.5) Iflls S IFIEIVEIL, v Fe

We will also need the following non classical Gagliardo-Nirenberg type interpolation
inequality.

Lemma 3.4. Let p € (2,00). For any 3 > 0, there is Cg > 0 such that
IVwliz < BlwlZs + CslVPwllfz,  Ywe LP 0 H?.

Proof of Lemma 3.4. We compute

wl2, = 115 2% —2/31512/3)(1¢18/3 | 5| 4/3
IVulize = [ Q7 @herta + [ (el e lal )

1 ~ —~ 1 ~ ~4
S €)@ 2 €@ 2 + [1(6) B35 1€ 2@ 15

2/3 4/3
S wll g1 V2wl 2 + w]22, | V2w]7s

2/3 4/3
S wller V2wl 2 + wl| 72V 2wl]| 35,

where we have used the Cauchy-Schwarz inequality in the second line and the continuous
embedding LP(R?) ¢ H~'(R?) (consequence of the embedding H*(R?) C L (R?)) in the
last line. We then conclude by applying Young’s inequality. O

4. ESTIMATES FOR L1 1

In this section, we establish some dissipativity estimates and related semigroup decay
estimates successively on the operators £; 1 and related operators.
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4.1. Dissipativity estimates related to £; ;. In order to keep track of the ¢ > 0
dependence, let us denote
A =Ly,
where we recall that this one is defined by
L119 = Ag+div(uzg — gVP — QVE * g).
We start with a first fundamental dissipativity estimate.

Lemma 4.1. For any k > 3, there some constants €9 > 0, small enough, and Cy, oy > 0,
large enough, such that

1
(4.1 (Mg, )iz < —nlk = 2)l2; — 5190125 + Collgl3a(s,)
for any e € (0,e0) and g € HE.
Proof of Lemma 4.1. We briefly repeat the proof of [8, Lemma 4. 4] We compute

(Mg, g) 2= /Agg y2k —|—/d1V uxg)g( /le gVP)g /le QVk * g)glx)?*
=0+ 1L+ I3+ 14,

and estimate each term separately. For the two first terms we have

oty == [199P@% + [vag* (@)™

where V| Al (a)}
Vix Alx Vix
N o Y
— k(2k + p){a) 2 — plk — 1) — 2kz)
Moreover, for the third term we compute

Iy = /gVP-Vg(x>2k —I—2/gz<x>2kVP-

_ 1 2/ \2k / Viz)k 5 o

5 /APg ()" + [ VP BL g°(z)“".
Thanks to the uniform estimates (2.9) and (2.10) on P, we observe that
V(z)*
()*

< lz - VP poe(2) ™! < Crfa) ™

e

and
|AP| < Cype + Cs(z) ™!
for some constants C; > 0, which imply

5,uC’2 Cs 1
B < #5211 + (€ + 5 ) o) Holl.

For the last term we write
k
I = /Q(W % g)Vg(x)®* + 2/Q(W x g)igz glx)*.

Since ||Q(x)?*| =~ < Cy and ||Q(x)*V (z)¥|| 1~ < C4 thanks to estimate (2.8), we obtain
14 < Cul|VE + gl 12[Vgll L2 + 2Ca[[VE * gl 2|9 2

1
< CilIVe xglliz + 5 IVallze + Cillgllze

_ 1
i) gliZ; + 519l

where we have used Lemma 3.1 and Young’s inequality. Gathering the previous estimates,
we get

(Ao, )1z <~ [ IVoP@* + [ 0162
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with

1= —p (k —1- f‘") + (ng +C1+ C;) (@)™ + k(2K + p) )% — K (z) ™

< —pn (k —1- E?) + Cs(z) "L

We remark that, for any g9 > 1, we have

_ _ 1
(@) (@)™ < 05" iay<pp + g@%a

thus we obtain

(4.2) <Asgag>L§ < *Q”V!]”Li —H <k7 —-1- o ,UQO> ||9||L§ + CO”gHL?(BQO)
where Cy = (5 Q%k_l. We therefore choose ¢ > 0 small enough such that £gCy < 1 and
0o > 1 large enough such that % < 1/2, which concludes the proof. ]

4.2. Splitting of the operator £; ;. We introduce the splitting
Ae=A+B,, A:=Mx, B:.:=A—A,

with x,(z) := x(z/0), x € D(R?), 1p@o,1) < X < 1p(o,2), and constants M, o > 0. We
immediately deduce from Lemma 4.1 that B, is dissipative, more precisely:

Corollary 4.2. For any k > 3, any € € (0,£9) and any constants M > Cy and o > oo,
there holds

1
(4.3) (B, 9)12 < —nk = 2)llgl7z — 5IValzz < =Molz —olallz;

for any 0 < X\ < p(k —2) with 0 = min(1/2, u — X), and where 9, Co, 00 > 0 are taken
from Lemma 4.1.

Remark 4.3. We shall fix hereafter the parameters M > Cy and ¢ > g¢ in the definition of
B. such that Corollary 4.2 holds.

In order to work at the level of the semigroup, we reformulate (4.3) in the following way.

Lemma 4.4. For any k > 3, € € (0,e9), M > Cy and ¢ > o, there holds
(1) For all 0 < X < p(k —2) and all g € L}, we have

lexSs. (Vgllzerz + lexSs. (Ygllzm < lglz.
(2) For all 0 < X\ < u(k —2) and all exR € L}H, ", we have
lex(Si. # R)lepz + lex(S. * B) 2y < lexRl 2y 1.

Proof of Lemma 4.4. Let 0 < A < u(k —2). For g € L?, we first consider f := e\S5.(-)g
the solution to the evolution equation

Ohf =Bf+Af, f(0)=g.
Because of (4.3), we have

1d
5 gl 1I72 = (Bef. iz + M flIZz < —ollfI,
from which we deduce (1) thanks to the Gronwall’s lemma.

For R such that eyR € L?Hk_l, we next consider f := e)(Sg. * R) the solution to the
evolution equation

Of =B.f+Af +exR, f(0)=0.
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Because of (4.3) and the Young inequality, we have
SRy = (Bef f)ug AN, + (eaR g
ol £1% + el £l
912 2
=211y + CllesRI, .

for some constant C' = C(u,A) > 0. We deduce (2) thanks to the Gronwall’s lemma
again. O

IN

IN

4.3. Spectral analysis of £; ;. We deduce a nice localization of the spectrum of £ 1 from
the previous estimates and a perturbation argument. Let us denote by Ag the linearized
operator of the parabolic-elliptic Keller-Segel equation which is given by

Aog = Ag + div(uzg — gV Py — QoVEk x g),

where (Qo, Pp) is a solution to (1.3) with e = 0. From [7, 11], we know that for k£ > 3 and
0 < A < u, there exists a constant C' = C'(\, u, k) > 1 such that

1580 (D fllz2 < Ce | fllrz, YV f € Lio,
and the spectrum verifies
(4.4) E(Ao)NnA_, ={0}

where A_,, ;= {2 € C: Rez > —pu}.
By a perturbation argument similar to the one used in [18] (see also [27, 16]), we are
able to obtain a similar picture for the operator £; 1 = A..

Proposition 4.5. Let k > 3. For any 0 < A\ < pu, there is €, > 0 small enough, such that
the operator A, on Li satisfies

L(A)NA_,={0}, Vee(0,&%).
Proof of Proposition 4.5. We split the proof into several steps.
Step 1. We claim that
Us(z) := Rp.(2) = Ray(2)ARB. (2)
is uniformly bounded in #(L2) and Z(H, ', H}) for any z € Q := A_,\B(0,7/2) any
e>0and 0 <7 < A < g On the one hand, Rp.(2) € Z(L2) is just an immediate
consequence of the growth estimate on Sp_ established in Lemma 4.4-(1). For proving
Rp.(2) € B(H, ', H}), we consider first g € L2, z € A_,, and we define f := Rp.(2)g, so
that (z — B:)f = g. Using (4.3) and the fact that pu(k —2) > u, we deduce
1
SV + (Rez + mF1% < (= = B)f, F)z = 4, 0) s < 1 lagllgl s
and thus
(4.5) IV £z < max(2, 17" gl -

By a density argument, the same holds for any g € H ! From (4.4), we also have
R, (2) € B(L2) uniformly bounded in £(L3) for any z € Q := A_,\B(0,r/2). Moreover,
the proof of the bound in (L%, H}) is exactly the same as for Rp.(2). Indeed arguing as
in Lemma 4.1, we first obtain

1
(Bof, f) iz < —blfI2 = IV 12 + Collf 1225,

Defining f := Ry, (2)g, we deduce
1
ez + )% + LIV A2 — Coll s < {2~ A0)F. £z = (0. 1)z < Clall%.

Step 2. We claim that the family of operators (A.) converges in the sense

[1Ae = Aol z(mr 2y < m(e) —= 0.
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We may indeed write
(Ae = Ao)g = (B:—DBo)g
= —div(gV(P: — Py)) — div((Q: — Qo) VEk * g)
= _VQ'V(PE_PO)+9A(PE—PO)
+V(Q: — Qo) - VE * g — (Qe — Qo)g,
so that
[(Ae = Ao)gllz < IV(E: = Po)ll=l[ Vgl 2 + [|A(P: = Po)llze<lgll .2

HI(2)*V(Q= = Qo)llz=llgll 2, + 1Q= — Qollz=llgl 2

140
We immediately conclude since we are able to prove (see Lemma 2.3)
V(P: = Po) =0, A(P-=Py) =0, (2)"V(Q:— Qo) =0, Q:=Qo—0
uniformly in L>°(R?).
Step 3. We claim that X(A;) N A, C B(0,7/2) for any € € (0,e0), choosing €9 > 0 small
enough. On the one hand, we write the two resolvent equations
Ra. = Rp. — Ra.ARs.,

£

Ra. = Rp, — Ra.(Ac — Ag)Ra,»

from what we deduce
RAE = RBE — RAO-ARBE + RAS (Ag — AO)RAOARBsa

or equivalently
7—\>ng (I + ICE) = usa
with
Ke = (Ao — A)Rp,ARB. -
On the other hand, from Step 1, we have Ry, (2)ARg.(z) is bounded in ZB(L%, H})
uniformly in z € Q := A_,\B(0,7/2) and Ag — A; is small in Z(H}, L}) for € > 0 small,
so that both estimates together imply

sup I1Ce ()l 32y < 1,
z€A_\B(0,r/2)

forany 0 <7 <A< pand e € (0,e0), with eg = €o(r, A) > 0 small enough. This implies
that I + /. is invertible on  := A_,\B(0,r/2) so that

Ra, =U(T+ 1K) !
is bounded on €2, which ends the proof.
Step 4. We define now

e L [ Ry ()ds Tim{ze Tl =0}
2w Jr

the Dunford projector on the eigenspace associated to eigenvalues of A, which belong to
the ball B(0,7). We write

M — L/u6(1+/c€)—1dz
2w Jr
_ L/RBE {I-K. (I+/c€)‘1}dz—i/ Rag ARp, (I+K.) " dz
2w Jr 27 Jr

i - i -
= _g/FRBEICe (I+IC5) ldz N %/F RAOARBE (I+IC5) 1d2’,

and
)
My = - / (R, — Ry AR, } d=
™Jr

= o [ RagARB (I + K™ 4 KT+ K
r
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We deduce
/) _
M-l = 5= [ (RaARg, — Re)K. (1+ K" d:

+L / Ry A{RB, — Rp.}(I + K)tdz
27 Jr
_ b 1
= o /FUE/CE (I+K:) " dz

+§ /FRAOARBO{BO ~BRs (I + Ko) L dz.

We conclude that [|II: — Ilo|| 52y = O(¢) < 1 for € > 0 small enough by taking advantage
of the estimates established in Step 1 and Step 2. By classical operator theory (see for
instance the arguments presented in [16] in order to prove [16, Chap 1, (4.43)]) one deduces
that dimIl, = dimIlp = 1. On the other hand, at first glance we have A1 = 0 and
1 € (L}) so that 0 € £(Af) = £(A.), and 0 is the only spectral value of A. in the ball
B(0,r). O

4.4. Semigroup decay estimates for £ ;. We are now able to deduce a nice semigroup
decay estimate on Sg, ; from the previous estimates on the resolvent.

Proposition 4.6. With the notation of Proposition 4.5, for k >3, all 0 < XA < p and all
e € (0,e4) there holds, for any g € Lz,o:
1e,, Ogllz S e gl 2.

Proof of Proposition 4.6. 1t is a consequence of Proposition 4.5 and of the splitting structure
of the operator A.. More precisely, we may for instance apply the quantitative mapping
theorem [19, Theorem 2.1], where it is worth emphasizing that Rp.(2) : L2 — H} C D(Aé/2)
with uniformly bound in z € A_y, which is a strong enough information in order to establish
[19, (2.23)] without checking [19, (H2)]. Alternatively, one can use the Gearhart-Priiss-
Greiner theorem [13, 25, 1] in order to get the same conclusion. O

Thanks to the previous estimate for S, ; and the estimates for Sp_ in Lemma 4.4, we
are able to deduce semigroup estimates for S, , (in Propositions 4.7 below) similar to
those satisfied by Sz, .

We start observing that, thanks to Duhamel’s formula, we have

(4.6) Scyy =SB, +Sp. AxSg,, and Sg,, =S+ Sc,, x ASs.-
Denoting IItg = g — Ilg, where II is the projection onto Ker(A.), we obtain
(4.7) Sg, I+ = Sp. 1T+ (Sp. A% Sg, ,TIY) and  Sg, ,IT- = I+Sp, +(Sg, , I+« ASg.).
Using that Sz, ,II* = II*+S,, |, and iterating the formulas yields
Sp, It = Sp It + Sp. A x 11+ Sp. + Sp. A* Sg, 1T+ ASp,
and

(4.8) ;5'51&1_[L = Hl535 + 5’1361_[L * ASp. + Sp. A * SﬁMHL * ASp. .

We deduce by combining some results of section 4.2 and the above Proposition 4.6, some
additional estimates on the semigroup Sg, ;.

Proposition 4.7. Let 0 < XA < p and k > 3. There is €, > 0 small enough such that for
any ¢ € (0,e,) the following holds:

(1) Forall g € L%,o we have
lexSeas (gl zzezz + leaSer s (Vollzm S gz

(2) For all exR € L}H; " with IIR = 0, we have

ex(Sc,, * )

S ||e>\RHL§Hk—1~

ex(Seo, # B+
H A L1a ) LPL? L2H} ™
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Proof of Proposition J.7. Proof of (1). Remark that g = IItg, since g € L? o- The first
estimate is nothing but Proposition 4.6. In particular, we deduce from this one that
1 1
(4.9) lexSe, I Ly S llexSey I [ e pr2y) S 1,

by choosing A < A’ < 1. On the other hand, thanks to Lemma 4.4-(1) and the first estimate,
we have

lexSs.(Dgllzm < llgllrz

and
lex(Ss. * ASz,,)()9llrzmr S llexASc,, ()gll 2

S lleaSe, (gllzzre
< llgllzz,

where we have used that A € %(L2), from which together with the first identity in (4.6),
we immediately obtain the second estimate.

Proof of (2). Remarking that R(t) = II*R(t), for all ¢ > 0, and using the second identity
in (4.7), we may write

(4.10) Sey, * R =Sg, I« R=T1"(Sp. * R) + Sg, , 1"+ ASg, * R,
and thus
ex(Se,, * R) = exIl* (Sp. * R) + (exSg, , 11M) » Aler(Sp. * R)].
We deduce
lex(Se,, R)HLfoLi < lea(Sa. = R)HL?‘JLi + H(e)\Sﬁl,lﬂL) +« Alex(Sp. R)]HL;”L%

< llea(Sp. * R)ll o2
1
+|lexSe, , 11 HL%(%(L%))HAH%(L%)He/\(SBs * R)HL;’OLi
S leaRl g1,

where we have used Lemma 4.4-(2) and (4.9) in last line. We have established the first
estimate in (2).
For the second term, using (4.8), we may write

Sy xR = I (Sp, * R) + Sp. 11 « ASp, * R+ Sp. A * SELIHL * ASp. * R,
and thus
ex(Sz,, *R) = I e\ (Sp. * R) +e,[Sp. « (11" ASg, x R)|+e)[(Sp. A) *(Sc, , JI* + ASp, * R)].
We now estimate each term separately. From Lemma 4.4-(2), we have
lex(Ss. * B)llrzmy S lleaRl gz
From Lemma 4.4-(2) again, we also have
lexlS. * (T ASp, * Rl 2 < llex(ITHASp, * R)| 21
< llex(IT-ASs, * R)| 122
< llex(Ss. « Rl 2.2
< xRl 2y
We finally have
lex[(Ss.A) * (e, IIH + ASp. * R)]|| 213
< II(exSe, , T1%) * [Aex(Sp. * Rl 21
S ll(exSe, 1) * [Aex(Ss. * R)] 212
S llexSey I [ ey Al ez llex(Ss. = R)) 2.2

< lexRl gzt
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where we have used Lemma 4.4-(2) in the second line as well as Proposition 4.6 and
Lemma 4.4-(2) in the last line. Putting the three last estimates together, we conclude to
the second estimate in (2). O

5. ESTIMATES FOR Lo

In this section, we are concerned with establishing estimates on Sg, ,, where we recall
that Lo 9 is defined

1
Loow = EAw + px - Vw + Vi * [QVw].
Lemma 5.1. For any p > 2, there exist c,, C, > 0 such that
_ C 2 ’
J (o™ < 2Ty - Ll + Clul Vo,

for any w € W?2P,

Proof of Lemma 5.1. We classically compute
/(Cg,gw)wp_l = f%p / Vw22 — pia /wp + /wP—lw* (QVw).
p

We conclude by observing that
Jwr ' Ves@Vw) <l 195 Q)L

/
< Ml 1QVwll

/
S wllPP 1Vl s,

where we have used Holder’s inequality in the first line, Lemma 3.2 in the third line, and
Lemma 2.2 in the fourth one. [l

We observe that
1
Vigow = gA(Vw) + px - V(Vw) + pVw + Vi + [QVw),

where we denote
(x - V®); = 20,9, (VQH * @); = Ok * Dy,

for any vector ®.

Lemma 5.2. For any w € H?, there holds
1
(Lagw,w) gn = ——[[V?w][f2 — |QVVuw][F..
Proof of Lemma 5.2. A straightforward computation gives

1
(VLyow,Vw)r2 = /(EAVw + uVw + pz - V2w + V26 x [QVw]) Vw

1
= - [P - [QIveP,

where we have performed two integrations by parts for the last term and we have used the
identity Ax = —9. d

As a consequence of previous estimates, we obtain the following decay and regularization
estimates for the semigroup S, ,.

Lemma 5.3. Let p € (2,00) and 0 < ¥ < 2?“. There is €2 > 0 small enough such that for
any € € (0,e2) the following holds:
(1) For allw € LP N H', we have

1
€05, ()Wl oo (Lrnpy + l€9Sc2 (w2 e + %|’e195£2,2(')w||[1%g2 S lwll -
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(2) For all egS € L} (L? N H'), we have

Heﬂ(Sgl2 xS

+ Heﬁ(S[;Q’2 * S)‘

€y 5522 S)‘

L2H?2

L2Lr \[ H

S lleoSlirzre + llevSl 2 g

Lo (LPNH1)

Proof of Lemma 5.3. Let us denote ¢ = eySr,,(-)w the solution to the evolution equation
0o = Lapd+9¢9, ¢(0) =w.

Thanks to Lemma 5.1, we have

Gl < (9= 2 Jolt, + ol 1961,

and because

1d
A G A

we get
33l < (9= ) 16l + Cllolus IV 61 .

Combining that last estimate with Lemma 5.2 yields

1d o 1
+ Cl el IVl Lo

Observing that thanks to (3.4) and Young’s inequality, we have

CllollzelVolize < CllBlZC V28] < C77 113 + ?IIV%H%%

with § = p/(2 4 p), we thus obtain
1d

1
331 {161t +IV8lEa} < = (2 0= 7% ) 10l + 9190132 — oI V2013

Finally, taking ¢ > 0 small enough and using Lemma 3.4, we hence deduce

o {16l + V913 } < —ollolizs — IVl

for some o > 0, from which (1) follows by Gronwall’s lemma.
We now consider ¢ = ey(Sc,, * S) the solution to the evolution equation
Ko = L2290+ 00 +eyS, ¢(0) =

Arguing as above we have

1d 2u 1

335 Lol +IV9lE:} < = (22— 0— 70 ) 191, + 1Vl — 51920l
+ l1¢llzrlegSllze + IVEl 12l€aV S| 2.

By Young’s inequality for any 8 > 0 and some Cj > 0, we get

1d

1
331 161 + Vol < = (2 =9 - 07 = 8) ol + 0+ B)I VIR — o IV26l1

+CsllesS|IEs + CsllesVS|7a.

We then conclude to (2) arguing as before by taking , 5 > 0 small enough, using Lemma 3.4
and applying Gronwall’s lemma again. O
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6. SEMIGROUP ESTIMATES FOR THE LINEARIZED SYSTEM

We start with some estimates on the out of the diagonal operators £ 2 and L2 which
we recall that they are defined in (1.9) by

Liow=—div(QVw), L219=9+ Vex[gVP+QVE=*g|.
Lemma 6.1. For k > 3 and p € (2,00), there hold
L1201 S Il IVl Z. Yw e 2P0 B,
with 6 := p/(2+p), and
1£219llze + L2190 g S llglly, Vg € Hy.
Proof of Lemma 6.1. For the first estimate, we write
[div(VQ - V)| g S [VQ - Vwl| 2
S IVwlze
S Nl 71V w] 7,
where we have used the exponential decay of @ (see Lemma 2.2) in the third line together
with Holder’s inequality, and also (3.4) in the last one.
For the second estimate, we write
1L2,19llze < llgllzr + IVE * [gVP]|r + |VE = [QVE * g]|| L,
and we estimate the three terms at the RHS separately. On the one hand, we have
Ve [gVP]l|e S [lgVPllLe
< llgllze

where we have used Lemma 3.2 in the first line and Lemma 2.2 in the second one. Similarly,

we have
Ik # [QVr * glllr S I1QVA * gl 1

S IVE gl
< llgllze

by using successively Lemma 3.2, Lemma 2.2 and Lemma 3.2 again. Therefore we get

1L2290e S ll9llzz S N9l
thanks to the Sobolev embedding H}(R?) C L (R?).
For the third estimate, we write
1£o19l i < IVgllz2 + 926 5 [V P)l| 2 + 926+ [QVi * gl 2
S IVgllgz + 9V P2 + 1QV % gl 2.

where we have used (3.1) in order to handle the two last terms. Thanks to Lemma 2.2, we
have

19V Pz < 19l 2
We also have
1QVE *gllL2 S IVE*glle S llgllzz,
where we have used Holder’s inequality and then Lemma 3.2. To conclude, we put together
the three last inequalities. ]

As a consequence of Proposition 4.7, Lemma 5.3 and Lemma 6.1, we obtain the following
semigroup estimate on the linearized problem.

Proposition 6.2. Let 0 < XA < p and k > 3. There is €, > 0 small enough such that for
any € € (0,e4) there holds:

(1) For any (go,wo) € L%O x (LP N HY), with 2 < p < 27“, we have
lexSz () (g0, wo)ll e (x) + lexSc(+)(gos wo)ll L2y S [1(g0, wo)l|x-
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(2) For any e\R = ex(R1,R2) € L7 (H, ' x (LP N H")) with IRy = 0 we have
lex(Se * R)llLge(x) + lea(Se * R)ll 2y S leaRll e a1 (zoniny)-
Proof of Proposition 6.2. We split the proof into two steps.
Proof of (1). Let us denote
(9(t),w(t)) = Sc(t)(go, wo),

so that

g(t) = Sﬁl,l(t)go + (Sﬁl,l * [’LQw)(t)
and

w(t) = SEQ,2 (t)’wo + (Sﬁ2,2 * ‘C2,1g)(t)'

We observe that (£ 2w)) = 0 so that II(£; sw) = 0, and we can then hereafter apply the
results of Proposition 4.7 to S, , * L1 2w. From Proposition 4.7-(1), we have

llexSc.y ()gollLeerz + llexSeyy (Dgollzar < llgoll 2
On the other hand, from Proposition 4.7-(2) , we have
lex(Sey * L10w) | zerz + lea(Seuy * Liz2w)llrzim S llealipwllpzy
S ||eAw||EszeAwHigH2

with § = p/(2 + p), where we have used the first estimate in Lemma 6.1 and the Holder
inequality in the second line. We have thus established

—0 6
(6.1) lexgllzgerz + llexgllzuy < Cillgollzz + Callexwllzy, lexwl7a ..
for some constant C7,Cs > 0.

We now come to the estimate of w. We recall that from Lemma 5.3-(1), we have

1
lexSey s (Jwoll oo (onpy + €422, (wollp2re + %HGASLQ,z(')wOHLfHQ S llwoll o
We recall that from Lemma 5.3-(2), we have

1
||e>\(SE2,2 * £2,1g)||L°° LrAf) T ”e)\(sﬁ2,2 * £2,lg)||L2LP + 7”8)\(552,2 * EQ,lg)”]ﬂH?
> ( ) t \/g t

S lextzagllrzre + llexlzagllpz

< lleagllza
where we have used the second estimate in Lemma 6.1 for obtaining the last inequality.
The two last estimates together, we have thus established

1
(62 llexwlzze g+ lexwllizin + llexvilizin < Collwollz + Callexgluzmy.

for some constants Cs, Cy > 0.

Coming back to (6.1) and using Young’s inequality, we deduce that for any 5 > 0, there
is some Cg > 0 such that

lexgllzzezz + lexglizzim < Callgollzz + Bllexwllyz e + Collewll
Combining that last estimate with (6.2) yields
lexgllzeerz + lleaglizm < Cillgollzz + BCsllwollz2 + BCulleagllzz m
+VeCsCsllwoll 2 + VeCpCallergll Lz -
Choosing first 8 > 0 small enough and then € > 0 small enough, we obtain
lexgllzze 2 + lexglzzm < Cslgollzz + Collwoll 2

for some constants C5,Cs > 0. We then conclude part (1) by gathering this last estimate
with (6.2).
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Step 2. Let us denote (G, W)(t) = (Sg * R)(t), so that
G(t) = (Seiy * L12W)(E) + (Szr * Ra)()
and
W(t) = (S£2,2 * L"?,lG)(t) + (SC2,2 * RQ)(t)'
Observing that IIRy = II(L£12W) = 0, we may use Proposition 4.7-(2) as well as addition-
ally Lemma 6.1 for handling S, , * £12W, and we obtain
lexGlperz + lexGliziy < ColleaW 7, leaW sz + CillexRall g

for some constant C7,Cy > 0 and with 6 = p/(2 + p).
Similarly, using Lemma 5.3—-(2) and additionally Lemma 6.1 for handling S, , * £21G,
we have

1
lexWill Lo (Lonarny + lleaWllzzre + \flleAWHLgm < CullexGll 2 + CalleaRall 2 1oy,
for some constants C%, Cy > 0. We can then conclude to (2) by arguing as in Step 1. O

7. PROOF OF THE NONLINEAR STABILITY THEOREM

This section is devoted to the proof of Theorem 1.1. We fix A > 0, £ > 3 and p > 2 such
that
2p
p
We next choose gg € (0,¢,), where £, > 0 is the small scale time provided by Proposition 6.2.
Consider the space

A< —

2 = {(g,w) € L¥(L}o x (LP N HY)) N LE(HE x (L2 0 H2) | [[(9,w)]2 < o0}
with
(g, w)llz = lex(g, W)l ey + lea(g, )l z2(y)-

For a fixed initial datum (go, wp) € X, define next the mapping ® : Z — Z, (g, w) — @[g, w]
given by, for all ¢t > 0,

®lg, wl(t) = Sc(t)(go, wo) + (Sc * Rl(g, w), (g, w)])(#),

where
Rl(g,w), (g,w)] = (Ral(g,w), (g, w)] + S1[(g,w), (g, w)],
Ra[(g,w), (9, w)] + Sa[(g, w), (9, w)]) ,
with
Ra[(g, w), (g, w)] = —div(¢Vw),  Si(g,w), (g, w)] = = div(gVr * g),
Ro[(g,w), (g, w)] = Ve [gVw],  Sa[(g,w), (g, w)] = Vk + [gVk + g].
We observe here that the first component of ®[g, w](t) belongs to Lk o since

HRI[(gaw)v(ng)] :HSI[(97 ) ( )]

thus in the sequel we can apply the results of Proposition 6.2.
Thanks to Proposition 6.2, we have

152()(g0, wo)llz < 1l (g0, wo)l 2 (Lo

as well as
15+ Rllz < llexRil(g, w), (g: w)lll 2y + lexSi{(g, w), (g, w)]ll 2
+ lleaRe[(g, w), (9, w)lll 210 + lleaRal(g, w), (9, w)]ll 2 1
+ lleaSa[(g, w), (9, Wl 22» + llexS2[(g, w), (9, )]l L2 1

and we now estimate each term separately.
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For the term associated to R, we first have
Idiv(gVw)ll g+ S lgVuwllLz
S lgllza IVwllza

1/2 1/2 1/2 1/2
S gl gl 19l 292wl 12,

where we have used Holder’s inequality in the second line, and twice the Ladyzhenskaya’s
inequality (3.5) in the last one. We hence obtain

1/2 1/2 1/2 1/2
leaRal(g w). (g, w)lll 2z < leagllye a1Vl leaglar V2wl

< (g, w)1%-

For the term associated to Si, arguing similarly as above, we get

(7.1)

| div(gVr* g)ll g5+ < lgVr * gl 1z
< gl oV * gll
S gl Mgl 195 = g2 1%k * g2
< lgllzz ol

where we have used Holder’s inequality in the second line, twice the Ladyzhenskaya’s
inequality (3.5) in the third line and finally Lemma 3.1 and (3.1) in the last line. We hence
obtain

lexSil(a. w). (@ w)lll 21 < lexall iz lll 2
< [l(g, w)l|%.
For the term associated to Rs, thanks to Lemma 3.2, we have

Ve (gVw)lrr S gVl

(7.2)

and, because of (3.1), we have
Ve (gVw)ll g S llgVwl 2.
We can thus argue as above for obtaining (7.1), and we deduce
(7.3) lexRa[(g. w), (9,w)]ll2r + lexRel(g,w), (g: W)l 211 < II(9,w)IIZ-
Finally, for the term associated to Sz, thanks to Lemma 3.2 and (3.1), we have similarly
IV (gVE s g)le S lgVe* gl L2

and

IVE* (gVE* g)ll g S 19VE * gl 12,

and therefore, arguing as for obtaining (7.2) yields
(7.4) lexSa[(g: w), (g, w)]llzr + llexS2l(g, w). (g:w)ll 2 S (g, w) 1%
Putting together (7.1)—(7.4), we have hence obtained a first estimate

(7.5) 12[g, wlllz < Coll(g0, wo)ll g2 w2 + Cill (g, w) %

Now, for (g,w), (g, w) € Z, we remark that
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v R} = Ril(g, w), (9, 0)] - Ral(3, ©), (5, 0)
= Ri[(g9,w), (9, w) — (g, w)] + R1[(g,w) — (g, 0), (g, w)]

St = S1l(g,w), (g, w)] — S1[(g, w), (g, w)]
= S1[(g,w), (9, w) — (g, w)] + S1[(g9, w) — (g, w), (g, w)]

RS = Ra[(g,w), (9, w)] — Re[(g,w), (g,w)]
= Rs[(9,w), (9, w) — (g, w)] + Ra[(g,w) — (g, w), (g, w)]

= 52[(.9’ w)v (gaw) - (ga ’LZ))] + SQ[(g7w) - (g,@)a (§7w>]
Arguing exactly as above, we may establish a second estimate

(7.6) 1®(g, w) — ®(g,w)l[z < Ca ([[(g, w)llz + [|(g, @) 2) | (9, w) — (3, @)]|z-

As a consequence of the estimates (7.5) and (7.6), we can find g, n; > 0 small enough
such that Cong + C1n? < m and 2Cem; < 1 in such a way that ® is a contraction on
Bz(0,m1) for any (go,wo) € Bx(0,10). By a standard Banach fixed-point argument, one
can construct a unique global mild solution (g, w) € Z to (1.10) for any (go,wp) € X such
that ||(go, wo)||x < nmo. More specifically, choosing 7; := 2Cyny and 4Cy max(C1, Ca)no < 1,
the above solution in particular verifies the energy estimate

(7.7) 109, )| go () + (95 W)l 22 vy < 2C0l[ (g0, wo)ll.x

which is nothing but (1.7), as well as the decay estimate

(
(7.8) lex(g, w)llLge(x) + llea(gs w)ll 2y < 2Coll (g0, wo)llx,
which is nothing but (1.8).
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