CAUCHY PROBLEM AND EXPONENTIAL STABILITY FOR THE
INHOMOGENEOUS LANDAU EQUATION

KLEBER CARRAPATOSO, ISABELLE TRISTANI, AND KUNG-CHIEN WU

ABSTRACT. This work deals with the inhomogeneous Landau equation on the torus in the
cases of hard, Maxwellian and moderately soft potentials. We first investigate the linearized
equation and we prove exponential decay estimates for the associated semigroup. We then
turn to the nonlinear equation and we use the linearized semigroup decay in order to construct
solutions in a close-to-equilibrium setting. Finally, we prove an exponential stability for such
a solution, with a rate as close as we want to the optimal rate given by the semigroup decay.
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1. INTRODUCTION

1.1. The model. In this paper, we investigate the Cauchy theory associated to the spatially
inhomogeneous Landau equation. This equation is a kinetic model in plasma physics that de-
scribes the evolution of the density function F' = F(t,z,v) in the phase space of position and
velocities of the particles. In the torus, the equation is given by, for F' = F(t,x,v) > 0 with
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t € R x € T3 = R3/Z3 (that we assume without loss of generality to have volume one |T3| = 1)

and v € R3,
w OF +v-V,F =Q(F,F)
. Fli—o = o

where the Landau operator @ is a bilinear operator that takes the form
(1.2) Q(G, F)(v) = ai/ 4y (0 = 0.) [G20, F — FO,G.] dv,
R3

and we use the convention of summation of repeated indices, and the derivatives are in the
velocity variable, i.e. 9; = 0,,. Hereafter we use the shorthand notations G, = G(v.), F = F(v),
0;Gy = 0y,,G(vy), O;F = 0,, F(v), etc.

The matrix a;; is symmetric semi-positive, depends on the interaction between particles and
is given by

V;Vj
(1.3) aij (v) = [o]1+2 (&j - ) :

We define (see [2I]) in 3-dimension the following quantities

bl(v) = 8jaij(v) =2 |U"Y Vi,

c(v) = 0;5ai;(v) = =2(y+3)|v|” or c¢=8nd if y=-3.

We can rewrite the Landau operator (|1.2)) in the following way

(1'5) Q(Ga F) = (aij *y G)aijF - (C * G)F = Vv : {(a *y g)vvf - (b *y g)f}

We have the following classification: we call hard potentials if v € (0, 1], Maxwellian molecules
if v = 0, moderately soft potentials if v € [—2,0), very soft potentials if v € (—3,—2) and
Coulombian potential if v = —3. Hereafter we shall consider the cases of hard potentials,
Maxwellian molecules and moderately soft potentials, i.e. v € [—2,1].

The Landau equation conserves mass, momentum and energy. Indeed, at least formally, for
any test function ¢, we have

(1.4)

1 i F i Fy
/ Q(F,F)pdv = —7/ a;j(v — vy ) FF, OF _ o (05 — 0jp4) dv duy,
R3 2 Jr3xr3 F F,

from which we deduce that

(1.6)
d
— F@(v)dajdv:/ [Q(F,F) —v -V, Flow)dedv=0 for o(v)=1,0v,|v%.
dt Jysxgs T3 xR3

Moreover, the Landau version of the Boltzmann H-theorem asserts that the entropy
H(F) ::/ F log Fdx dv
T3 xR3

is non increasing. Indeed, at least formally, since a;; is nonnegative, we have the following
inequality for the entropy dissipation D(F):
d
D(F):=—-—H(F
(F) o= — 5. H(F)
1 o;F  0;F, o;F 0;F,
:7/ a;;(v — vy ) FF, — 2 -2
2 J13 <R3 xRS F F, F F,

It is known that the global equilibria of (|1.1) are global Maxwellian distributions that are
independent of time ¢ and position z. We shall always consider initial data Fj verifying

/ Fodxdv =1, / Fovdrdv =0, / Foy [v|? dz dv = 3,
T3 xR3 T3 xRR3 T3 xRR3

> dv dvy dx > 0.
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therefore we consider the Maxwellian equilibrium
p(v) = (2m) e M2

with same mass, momentum and energy of the initial data.
We linearize the Landau equation around p with the perturbation

F=pu+f.
The Landau equation for f = f(t,z,v) takes the form
nf=Af+Q(f. f)=Lf—v-Vof+Q(f.f)
Jit=0 = fo = Fo — p,

where A = £ — v - V,, is the inhomogeneous linearized Landau operator and the homogeneous
linearized Landau operator L is given by

Lf:=Qu f)+Q(f 1)
= (aij * p)0iz [ — (c* p) f + (aij * f)Oiju — (c* fp.

Through the paper we introduce the following notation

(1.7)

(1.8)

(1.9) ai;(v) = aij x p,  bi(v) =b;xp, e(v)=cx*p.

The conservation laws (|1.6)) can then be rewritten as, for all ¢ > 0,

(1.10) / ft,z,v)p()dedv =0 for @) =10, v
T3 xR3

1.2. Notations. Through all the paper we shall consider function of two variables f = f(x,v)
with z € T? and v € R%. Let m = m(v) be a positive Borel weight function and 1 < p,q < co.
We define the space LILP(m) as the Lebesgue space associated to the norm, for f = f(x,v),

v 1= [llm e

1/q
( / RUCR[ da:)
a/p
/ (/ |f(z,0) [P m(v)? dv) dx
13 \ JR3

We also define the high-order Sobolev spaces W 4W£P(m), for n, ¢ € N:
1l ovpr oy = ) 10502 Fll 5 15 m-

0<|a|<t,0<|B]<n, |a|+|B|<max(¢,n)

22z my = 1Lz | L

1/q

This definition reduces to the usual weighted Sobolev space Wf:g (m) when p = ¢ and £ = n,
and we recall the shorthand notation H* = W*%2. We shall denote W*P(m) = W5 (m) when
considering spaces in the two variables (x,v).

Let X,Y be Banach spaces and consider a linear operator A : X — X. We shall denote
by Sp(t) = e* the semigroup generated by A. Moreover we denote by %(X,Y) the space of
bounded linear operators from X to Y and by [ - |[5(x,y) its norm operator, with the usual
simplification B(X) = B(X, X).

For simplicity of notations, hereafter, we denote (v) = (1 + |[v]?)'/?; a ~ b means that there
exist constants c1,cy > 0 such that ¢1b < a < ¢ob; we abbreviate “ < C'” to “ <7, where C is
a positive constant depending only on fixed number.



4 K. CARRAPATOSO, I. TRISTANI, AND K.-C. WU

1.3. Main results.

1.3.1. Cauchy theory and convergence to equilibrium. We develop a Cauchy theory of perturba-
tive solutions in “large” spaces for v € [—2,1]. We also deal with the problem of convergence to
equilibrium of the constructed solutions, we prove an exponential convergence to equilibrium.
Let us now state our assumptions for the main result.

(HO) Assumptions for Theorem
e Hard potentials v € (0, 1] and Maxwellian molecules v = 0:
(i) Polynomial weight: m = (v)* with k > v+ 7+ 3/2.
(ii) Stretched exponential weight: m = e™*)" with + > 0 and s € (0, 2).
(iii) Ezponential weight: m = ™" with r € (0,1/2).
o Moderately soft potentials v € [-2,0):
(i) Stretched exponential weight: m = """ with r > 0, s € (—,2).
(73) Ezponential weight: m = e ™* with r € (0,1/2).

Through the paper, we shall use the notation o = 0 when m = (v)* and ¢ = s when m = er(v)”,

We define the space H3L2(m) (for m a polynomial or exponential weight) associated to the
norm

(1'11) ||hH?—L3L2 - Hh||L2L2 (m) + ||V h”Lsz m(v)—(1=0/2))

+ HvihHLiL%(m<v>*2(1*0/2)) + ||Vih||ing(m<v>fs(1fo/2>)~
We also introduce the velocity space Hg*(m) through the norm
(1.12)
111 Zs my = 12122 oy sy + IPo VRl T aoyrrzy + 1T = Po) Vol o gy 212y,

[v]

with P, the projection onto v, namely P, = (§ . i) IZ\’ as well as the space H3(H, ,(m))
associated to

1 Bs s oy = D32 ars oy + IVl s omgoy -0y

v,k

+ IIVihHL3<H5,*<m<v>f2<1fv/2>>> FIVehlZ2 (3. (mgy 20012
(113) — [ 1A o+ [ 192y iy
TS ’ T3 '

2 2 3 2
3@WM@NWaumf@wm%mwmwm

Here are the main results on the fully nonlinear problem (1.7 that we prove in what follows.
For simplicity denote X := H3L3(m) and Y := H3(H, .(m)) (see (1.11) and (L.13)).

Theorem 1.1. Consider assumption (HO) with some weight function m. We assume that fo
satisfies and also that Fy = pu+ fo > 0. There is a constant eg = €g(m) > 0 such that
if |follx < €o, then there exists a unique global weak solution f to the Landau equation ,
which satisfies, for some constant C' > 0,

||f||L°°([0,oc);X) + ||f||L2([O,oo);Y) < Ce.

Moreover, this solution verifies an exponential decay: for any 0 < Ao < Ay there exists C' > 0
such that

vt>0, [f(t)lx <Ce | follx,
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where Ay > 0 is the optimal rate given by the semigroup decay of the associated linearized
operator in Theorem [2-1]

Let us comment our result and give an overview on the previous works on the Cauchy theory
for the inhomogeneous Landau equation. For general large data, we refer to the papers of
DiPerna-Lions [7] for global existence of the so-called renormalized solutions in the case of the
Boltzmann equation. This notion of solution have been extend to the Landau equation by
Alexandre-Villani [I] where they construct global renormalized solutions with a defect measure.
We also mention the work of Desvillettes-Villani [6] that proves the convergence to equilibrium
of a priori smooth solutions for both Boltzmann and Landau equations for general initial data.

In a close-to-equilibrium framework, Guo in [9] has developed a theory of perturbative so-
lutions in a space with a weight prescribed by the equilibrium of type Hﬁv(u_l/ %), for any
N > 8, and for all cases v € [—3, 1], using an energy method. Later, for € [—2, 1], Mouhot-
Neumann [I5] improve this result to HY, (1 ~1/2), for any N > 4.

Let us underline the fact that Theorem [I.1] largely improves previous results on the Cauchy
theory associated to the Landau equation in a perturbative setting. Indeed, we considerably
have enlarged the space in which the Cauchy theory has been developed in two ways: the
weight of our space is much less restrictive (it can be a polynomial or stretched exponential
weight instead of the inverse Maxwellian equilibrium) and we also require less assumptions on
the derivatives, in particular no derivatives in the velocity variable.

Moreover, we also deal with the problem of the decay to equilibrium of the solutions that we
construct. This problem has been considered in several papers by Guo and Strain in [I7) 18] first
for Coulombian interactions (y = —3) for which they proved an almost exponential decay and
then, they have improved this result dealing with very soft potentials (y € [-3, —2)) and proving
a decay to equilibrium with a rate of type e™*" with p € (0,1). In the case v € [~2,1], Yu [25]
has proved an exponential decay in Hi\fv (p=1/?), for any N > 8, and Mouhot-Neumann [I5] in
Hgv(u’l/z), for any N > 4.

We here emphasize that our strategy to prove Theorem is completely different from the
one of Guo in [9]. Indeed, he uses an energy method and his strategy is purely nonlinear, he
directly derives energy estimates for the nonlinear problem while the first step of our proof is
the study of the linearized equation and more precisely the study of its spectral properties.
Then, we go back to the nonlinear problem combining the new spectral estimates obtained on
the linearized equation with some bilinear estimates on the collision operator. Thanks to this
method, we are able to develop a Cauchy theory in a space which is much larger than the one
from the previous paper []. Moreover, we obtain the convergence of solutions towards the
equilibrium with an explicit exponential rate.

Our strategy is thus based on the study of the linearized equation. And then, we go back to
the fully nonlinear problem. This is a standard strategy to develop a Cauchy theory in a close-to-
equilibrium regime. However, we have to emphasize here that our study of the nonlinear problem
is very tricky. Indeed, usually (for example in the case of the non-homogeneous Boltzmann
equation for hard spheres in [§]), the gain induced by the linear part of the equation allows
directly to control the nonlinear part of the equation so that the linear part is dominant and we
can use the decay of the semigroup of the linearized equation. In our case, it is more difficult
because the gain induced by the linear part is anisotropic and it is not possible to conclude using
only natural estimates on the bilinear Landau operator. As a consequence, we establish some
new very accurate estimates on the Landau operator to be able to deal with this problem.

Since the study of the linearized equation is the cornerstone of the proof of our main result,
we here present the result that we obtain on it and briefly remind previous results.
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1.3.2. The linearized equation. We remind the definition of the linearized operator at first order
around the equilibrium:

Af=Q(u, f) +Q(f pn) —v-Vaf.
We study spectral properties of the linearized operator A in various weighted Sobolev spaces
WnPWEP. Let us state our main result on the linearized operator (see Theorem for a

precise statement), which widely generalizes previous results since we are able to deal with a
more general class of spaces.

Theorem 1.2. Consider hypothesis (H1), (H2) or (H3) defined in Subsection[2.1) and a weight
function m. Let £ be one of the admissible spaces defined in (2.2). Then, there exist explicit
constants Ay > 0 and C > 0 such that

Vi>0, Vfe& [ISa(t)f —Toflle <Ce M| f —Mof]e,

where Sp(t) is the semigroup associated to A and Iy the projector onto the null space of A

by (10)

We first make a brief review on known results on spectral gap properties of the homogeneous
linearized operator £ defined in . On the Hilbert space L2(pu~1/2), a simple computation
gives that £ is self-adjoint and (Lh, h>L3(M71/2) < 0, which implies that the spectrum of £ on
L2(p~1) is included in R™. Moreover, the nullspace is given by

N(L) = Span{p, vi, vaps, vaps, |v]*p}.
We can now state the existing results on the spectral gap of £ on L2(x~'/?). Summarising
results of Degond and Lemou [5], Guo [9], Baranger and Mouhot [2], Mouhot [I3], Mouhot and

Strain [16] for all cases v € [—3,1], we have: there is a constructive constant Ao > 0 (spectral
gap) such that

(114) <_‘Ch7 h>L%(,u.*1/2) Z )\0||h||i111,,“(l»¢71/2)’ Vhe N(ﬂ)L

where the anisotropic norm || - [|g1 _ (,-1/2) is defined by

o (p
12l%r _umrr2y = 10) 2PV RN T o1y + {0} O = Py)VR|Za o2

+ H<U>(7+2)/2h||ig(u—1/2)»

where P, denotes the projection onto the wv-direction, more precisely P,g = (IL ) To]

also have from [9] the reverse inequality, which implies a spectral gap for £ in L2(p~1/2) if and
only if v +2 > 0.

Let us now mention the works which have studied spectral properties of the full linearized
operator A = L —v-V,. Mouhot and Neumann [I5] prove explicit coercivity estimates for hard
and moderately soft potentials (y € [—2,1]) in Hf’v(;fl/Q) for £ > 1, using the known spectral
estimate for £ in . It is worth mentioning that the third author has obtained in [23] an
exponential decay to equilibrium for the full linearized equation in L2 ,(u~"/?) by a different
method, and the decay rate depends on the size of the domain. Let us summarize results that
we will use in the remainder of the paper in the following theorem.

Theorem 1.3 ([I5]). Consider {y > 1 and E := H',(u='/2). Then, there exists a constructive
constant Ao > 0 (spectral gap) such that A satisfies on E:

(i) the spectrum X(A) C {z € C: Rez < =X} U{0};
(ii) the null space N(A) is given by

(1.15) N(A) = Span{y, vip, vaps, vsp, |v|* 1},
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and the projection Iy onto N(A) by
3

(] )5 (] 0o

i=1

2 _ 2 _
([ B ) RS,
T3 xR3 6 6

(#ii) A is the generator of a strongly continuous semigroup Sa(t) that satisfies

(1.17) Vt>0,VfeE, |[Sa®)f-ofle<e Y f—Tof|k.

(1.16)

To prove Theorem our strategy follows the one initiated by Mouhot in [I4] for the
homogeneous Boltzmann equation for hard potentials with cut-off. The latter theory has then
been developed and extend in an abstract setting by Gualdani, Mischler and Mouhot [§], and
Mischler and Mouhot [IT]. They have applied it to Fokker-Planck equations and the spatially
inhomogeneous Boltzmann equation for hard spheres. This strategy has also been used for the
homogeneous Landau equation for hard and moderately soft potentials by the first author in
[3, 4] and by the second author for the fractional Fokker-Planck equation and the homogeneous
Boltzmann equation for hard potentials without cut-off in [19 20] (see also [12] for related
works).

Let us describe in more details this strategy. We want to apply the abstract theorem of
enlargement of the space of semigroup decay from [8| [I1] to our linearized operator A. We shall
deduce the spectral /semigroup estimates of Theorem on “large spaces” £ using the already
known spectral gap estimates for A on Hfﬁv(;fl/Q), for £ > 1, described in Theorem
Roughly speaking, to do that, we have to find a splitting of A into two operators A = A+ B
which satisfy some properties. The first part A has to be bounded, the second one B has to
have some dissipativity properties, and also the semigroup (ASg(t)) is required to have some
regularization properties.

We end this introduction by describing the organization of the paper. In Section[2] we consider
the linearized equation and prove a precise version of Theorem In Section [3| we come back
to the nonlinear equation and prove our main result Theorem 1.1

Acknowledgements. The authors would like to thank Stéphane Mischler for his help and his
suggestions. The first author is supported by the Fondation Mathématique Jacques Hadamard.
The second author has been partially supported by the fellowship ’Oréal-UNESCO For Women
in Science. The third author is supported by the Ministry of Science and Technology (Taiwan)
under the grant 102-2115-M-017-004-MY2 and National Center for Theoretical Science.

2. THE LINEARIZED EQUATION

2.1. Functional spaces. Let us now make our assumptions on the different potentials v and
weight functions m = m(v):

(H1) Hard potentials v € (0,1]. For p € [1,00] we consider the following cases
(i) Polynomial weight: let m = (v)* with k > v+ 2+ 3(1 — 1/p), and define the abscissa
Am,p = 00.
(i1) Stretched exponential weight: let m = """ with 7 > 0 and s € (0,2), and define the
abscissa A, 1= 00.
. . N2 . .7
(i4i) Exponential weight: let m = ™) with r € (0,1/2) and define the abscissa A, , =
00.
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(H2) Maxwellian molecules v = 0. For p € [1, 0] we consider the following cases
(i) Polynomial weight: let m = (v)* with k > v+ 2+ 3(1 — 1/p), and define the abscissa
Amp = 2[k = (v +3)(1 = 1/p)].
(ii) Stretched exponential weight: let m = )" with 7 > 0 and s € (0,2), and define the
abscissa A, p 1= 00.
(iii) Exponential weight: let m = e’ with r € (0,1/2) and define the abscissa Amp 1=
0.

(H3) Moderately soft potentials v € [—2,0). For p € [1, 0] we consider the following cases
(i) Stretched exponential weight for v € (—2,0): let m = €™} with r > 0, s € (0,2) and
s+ > 0, and define the abscissa A, , := oo.
i1) Erponential weight for v € (—2,0): let m = €™ * with r € 0,1/2) and define the
E l ht f 2,0): 1 ()
abscissa A, ), 1= 00.
(iii) Exponential weight for v = —2: let m = e"** with r € (0,1/2), and define the
abscissa Ay, p := 4r(1 — 2r).

Under these hypothesis, we shall use the following notation for the functional spaces:
(2.1) E:=Hp,(nV?), =1,

in which space we already know that the linearized operator A has a spectral gap (Theorem,
and also, under hypotheses (H1), (H2) or (H3),

B { LE (m), Vpell,o0l;

(2.2) ¢
WEPWEr(m), ¥pe[1,2],ne N, £eN;

and for each space we define the associated abscissa Ag = Ap, 5.

The main result of this section, which is a precise version of Theorem reads

Theorem 2.1. Consider hypothesis (H1), (H2) or (H3) with some weight m, and let £ be
one of the admissible spaces defined in .

Then, for any A < Ag and any A1 < min{Ao, A}, where we recall that Ao > 0 is the spectral
gap of A on E (see ), there is a constructive constant C > 0 such that the operator A
satisfies on &:

(i) B(A) c{zeC|Rz< =\ }U{0};
(ii) the null-space N(A) is given by and the projection Iy onto N(A) by (1.16);

(iii) A is the generator of a strongly continuous semigroup Sa(t) that verifies
Vi>0,VfeE [Sa(t)f—Toflle <Ce M |f —Toflle.

Remark 2.2. (1) Observe that:
e Cases (H1), (H2)-(ii)-(iii) or (H3)-(i)-(ii): we can recover the optimal estimate
A1 = Ag since Ay, p, = +00.
e Case (H2)-(i): in this case we have m = (v)*, and we can recover the optimal estimate
A1 = Ao if k£ > 0 is large enough such that A, , =2k —6(1 — 1/p) > Ao. Otherwise, we
obtain A\; < 2k —6(1 —1/p).
e Case (H3)-(iii): in this case we have v = —2, m = er™* and Am,p = 4r(1 — 2r) and
the condition 0 < r < 1/2.
(2) This theorem also holds for other choices of space, namely for a space £ that is an
interpolation space of two admissible spaces £ and & in .
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The proof of Theorem uses the fact that the properties (i)-(ii)-(iii) with A\; = A\¢ hold on
the small space F (Theorem |1.3) and the strategy described in section m

In a similar way we shall obtain Theorem [2.1] we shall also deduce a regularity estimate on
the semigroup Sj that will be of crucial importance in the study of the nonlinear equation in
Section[3] For the sake of simplicity, and because it is the case that we shall use for the nonlinear
equation, we only present this result for the particular case of p =2 and ¢ =0 in .

Define the space H;*(m), associated to the norm

10y oy = 171 amgopiosorrzy + 1PV sy + I = o)V Iy

as well as the space H}(H} ,(m)), with n € N, by
(2.3) ||f||§1;(H;*(m)) = Z V5 F 122 o myy = Z / va‘cfH%{}_*(m)'
0<j<n ' 0<j<n” T2
We hence define the negative Sobolev space H;' (H, L(m)) by duality in the following way
(2.4) ||fHHg(H,;1(m)) = sup (f, &)y 12(m)-

H¢HH;1(H%’*<M)>51

Theorem 2.3. Consider hypothesis (H1), (H2) or (H3) with some weight m. Let & =
H}LZ(m) and E_y = H}(H, }(m)). Then, for any A\ < A1, the following regularity estimate
holds

(2.5) /O A |Sa(8)(1 — o) fIIZ dt < C|I(1 —Tho) fII2_,.

for some constant C > 0.

2.2. Splitting of the linearized operator. We decompose the linearized Landau operator £
defined in (1.8) as £ = Ay + By, where we define
(2.6) Ao f = (aij * [)Oijp — (cx fp, Bof = (aij * 1)0i; f — (cx p) f.
Consider a smooth positive function y € C2°(R2) such that 0 < x(v) < 1, x(v) =1 for |v| < 1
and x(v) = 0 for |v| > 2. For any R > 1 we define xr(v) := x(R™'v) and in the sequel we shall
consider the function Mg, for some constant M > 0.

Then, we make the final decomposition of the operator A as A = A + B with
(2.7) A= Ao+ Mxr, B:=By—v-V,— Mxr,
where M > 0 and R > 0 will be chosen later (see Lemma [2.7)).

2.3. Preliminaries. We have the following results concerning the matrix a;;(v).

Lemma 2.4. The following properties hold:

(a) The matriz a(v) has a simple eigenvalue ¢1(v) > 0 associated with the eigenvector v and a
double eigenvalue ¢(v) > 0 associated with the eigenspace v. Moreover, when |v] — +o0
we have

01(v) ~2(0)7  and ly(v) ~ (V)72
(b) The function a;; is smooth, for any multi-indezx 3 € N3
|0%a5(v)| < Cpv)r 217

and
aij (V)€ = (V)| PoE]? + Lo (v)[(I = P,)EI

> co{ (V)| PEI* + (0) T2 — P,)EPY,

for some constant ¢y > 0 and where P, is the projection on v, i.e. P,& = (5- |“—‘> L
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(¢) We have
;i (v) = tr(a(v)) = £ (v) + 2l (v) =2 [ |v — v (v, dus and  b;(v) = —1(v)v;.

(d) If |v| > 1, we have
|00, (v)] < C’ﬁ<v>77|m and 190505 (v)] < C’g(?})””flﬁl.
Proof. We just give the proof of item (d) since (a) comes from [5], Propositions 2.3 and 2.4,
Corollary 2.5], (b) is [, Lemma 3] and (c) is evident. For item (d), the estimate of [9°/3(v)]
directly comes from (a) and [9] Lemma 2]. For ¢;(v), using (b) and (c),
8vl_)7;(1)) = Bv( — 61(’[})’1)1') s
and hence -
|0ut1(v)[Jo] < C(Je1(v)] +[0ubi(v)]) < C(v)7,
note that |v| > 1, we thus have
10,01(v)] < Clo|™H(v)” < Clv)?7t.

The high order estimate is similar and hence we omit the details. O

The following elementary lemma will be useful in the sequel (see [3, Lemma 2.5] and [4}
Lemma 2.3]).
Lemma 2.5. Let Jo(v) := [ps [v — w|*p(w) dw, for =3 < a < 3. Then it holds:

(a) If2 < a <3, then Jo(v) < [0]* + Cu|v]|*/? + Cy, for some constant C,, > 0.
(b) If 0 < o < 2, then Jo(v) < |v|* + Cq, for some constant Co > 0.
(c) If =3 < e <0, then Jo(v) < C(v)* for some constant C' > 0.

We define the function ¢, , as
_ 82 im
(2.8) Om,p(v) = aij(v)#

and also the function ¢,, ;, given by

2 O;:m 2 o;m 0;m
Ponp(V) = | = = 1) @i;(v) =2 —4—(2—)&1--1)2 -
¥ ,p( ) (p ) ]( ) m » ]( )

+ ]2; Bi(v)a%m + (1 - 1) &),

and hereafter, in order to treat both weight functions at the same time, we remind the notation:
o =0 when m = (v)*F and o = s when m = ()",
We prove the following result concerning ¢y, , and @y, .

Lemma 2.6. Consider (H1), (H2) or (H3), and let ¢ and @,y be defined in (2.8))
and (2.9) respectively. Then we have:
o Assume o € [0,2):

(1) For all positive A < A p and 6 € (0, Ay p — A) we can choose M and R large enough such
that

m

(2.9)

Pmp(v) = Mxg(v) < =X = 0()7".
Gmp(v) — Mxr(v) < =X = 0()7.
(2) For all positive X < A p and 6 € (0, A, p — ) we can choose M and R large enough such
that
Pmp(v) = Mxgr(v) + MOjxR(v) < =X = 05()7.
Pmp(v) = MxR(v) + MOjxR(v) < =X = 6()7"7.
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o Assume o = 2: The same conclusion as before holds for ¢p, ,. Moreover, concerning ©m p, the
previous estimates also hold if we restrict v € (0,1/(2p)) in assumptions (H1)-(iii), (H2)-(iii),
(H3)-(ii), and also modifying the value of the abscissa Ay, p = 4r(1 — 2rp) in (H3)-(iii).

Proof of Lemmal[2.6. Step 1. Polynomial weight. Consider m = (v)* under hypothesis (H1) or
(H2). On the one hand, we have

Oim 9im 9;m

= kvi(v) 2 = K (v) ™
™ vi(v) "7, m m vie o)™
O™ _ g5 k(w)2 + k(k - 2)vro; (o)

m

Hence, from definitions (1.4)-(1.9) and Lemma we obtain

Qij 8;]:1 = (i) k(v) > + (@ijvivy) k(k — 2)(v) ™ = @4 k(v) 72 4+ £1(0) k(k — 2)[v]*(v) 7%,

where we recall that the eigenvalue ¢1 (v) > 0 is defined in Lemma Moreover, arguing exactly
as above we obtain

_ &m 8m _ _ _
Qg ——= == = (@) K (0) 1 = f () Ko v) 7
and also, using the fact that b;(v) = —f;(v)v; from Lemma
8im

b; = —01 (0)v; kv ()72 = =0 (v) k|v]? (v) 72
On the other hand, from item (c) of Lemma[2.4] and definitions (T.4)-(L.9) we obtain that
a;;(v) = €1 (v) +202(v) and ¢&(v) = —2(y + 3)J4(v),
where J,, is defined in Lemma [2.5] It follows that
Pm.p(v) = 2kl3(0) () () 7% + kb1 (v) () 72 + k(k = 2) £1(0) [v]* (v)

+(p = DE? 01(0) [uf* (v) ™ = 2k £1.(v) [0 (0) 7% + 2(y + 3) (1 - ;) Iy (0).

Since £1(v) ~ 2(v)7, la(v) ~ (V)72 and £1(v)[v|* ~ 203(v) when |v| — +oo thanks to
Lemma and also J,(v) ~ (v)? from Lemma (since in this case we have v > 0), the
dominant terms in (2.10) are the first, fifth and sixth ones, all of order (v)Y. Then we obtain
(2.11) lim sup oy (v) < =2[k — (v +3)(1 = 1/p)] (v)7,

|v] =400

(2.10)

and recall that k£ > (v +3)(1 —1/p). Doing the same kind of computations, we obtain the same
asymptotic for @, p,
(2.12) lim sup @, p(v) < =2k — (v +3)(1 = 1/p)](v)7.

|[v] =400

Step 2. Stretched exponential weight. We consider now m = exp(r(v)®) satisfying (H1), (H2)
or (H3). In this case we have

0; 0;m 0
L rsvi(v)* 2, WM Ojm. T252ij (v) 254,
m m m
dym _ rs(v)5728;; + 15(s — 2)vv; (V) T + 1252, (V)2
= ij i Uj i Uj .
m

Then we obtain
Omp(v) =2rs Lo(v)(0)572 4+ rs by (v) (V)52 + rs(s — 2) £ (U)|v|2<v>574

2.13
(213) ot O = s P 4 20 +3) (12 1) (0
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In the case 0 < s < 2, arguing as in step 1, the dominant terms in (2.13|) when |v| — 400 are
the first and fifth one, both of order (v)Y*¢. Then we obtain

(2.14) lim sup @y, p(v) < —2rs(v)7*?,

|[v] =400
and recall that s+~ > 0. In the same way we obtain

(2.15) lim sup @, p(v) < —2rs{v)7™.

|[v] =400

In the case s = 2, the dominant terms in (2.13)) when |v| — 400 are the first, fourth and fifth
ones, all of order (v)?7*2. Hence we get

(2.16) lim sup @ p(v) < —4r(1 — 2pr)(v)7H2.

|[v| =400
However, a similar computation gives

(2.17) lim sup @G p(v) < —4r(1 — 2r)(v)7+2,

|[v] =400

which is better than the asymptotic of ¢, ,. Thus we need the condition r < 1/2 for @, ,
(which is better than the condition » < 1/(2p) for ¢y, p).

Step 3. Conclusion. Finally, thanks to the asymptotic behaviour in (2.11)), (2.14)) and (2.16]), for
any A < A, p we can choose M and R large enough such that ¢, ,(v) — Myxg(v) < —A—3§(v)7T
for some ¢ > 0 small enough, which gives us point (1) of the lemma.

For the point (2) we use 9;xr(v) = R7'9;x(v/R) and write

C
Omp(v) = MxR(v) + MOjXR(V) < Ymp(v) — MxRr(v) + fo 1r<|oj<2r = ®(v).

We fix some A € (A, A\, ). First we choose R; large enough such that, for all |[v| > R;, we have
Omp(v) + (V)T < =X
for some 0 > 0 small enough, which implies that, for any |v| > 2R,
®(v) + 5(V)7T7 = P p(v) + 5()TTT < =N
Then we choose M > 0 large enough such that, for all |v| < Ry,
D) + (1) = P (0) + 6(0) T — M, (v) < —A.

Finally, we choose R > R; large enough such that, for any R < |[v| < 2R,

B0) + 3(0)74 < pngl0) + 804+ M < F4 M < -,
and we easily observe that now for Ry < |v| < R we have

®(v) + V)17 = @ (V) + (V)T — Myg(v) < =X = M < =),

which concludes the proof for ¢, ,. Concerning @, p, in the same way, inequalities (2.12)),
O

(2.15) and (2.17) yield the result.
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2.4. Hypodissipativity. In this subsection we prove hypodissipativity properties for the op-
erator B on the admissible spaces £ defined in (2.2)).
Hereafter we define the space W&y’f (m), with 1 < p < oo, associated to the norm

71y = 1712 iorinsoriey F NPT F72 syt I = PV S22y
as well as the space WP (W, 2(m)), with n € N, by
(218) B santzom = 3 IV Mgtz = 3 [ IV Ry

0<j<n 0<j<n

Lemma 2.7. Consider hypothesis (H1), (H2) or (H3). Let p € [1,400] and n € N. Then,
for any A < A, p we can choose M > 0 and R > 0 large enough such that the operator (B + X)
is dissipative in WP LP(m), in the sense that

(2.19) Vt>0, [ISs®)l@wrrrrmy < Ce
Moreover there hold: if p =1

o0
A
(2:20) /0 NS5Ozt L3 my, w2t L (mgoy 4oy A < 005
and if 1 <p < o0
>~ Apt p
(2.21) /O PS5, g0 1 oy - oy <

Proof of Lemma[2.71 We only consider the case n = 0, the general case being treated in the
sama way since V, commutes with B.
Let us denote ®'(z) = |z[P~!sign(z) and consider the equation

Of=Bf =Bof —v-Vuf — Mxr/f.
For all p € [1,4+00), we have
!
Ll oy = [N (0.
From and , last integral is equal to
/dij(v)aijf(x,v)@’(f)mp—/E(v)f(x,v)@’(f)mp

= [oeVar@o@ (Pm? — [ My o)@(fme
=T+ T +1T5+ T,
The term T3 vanishes thanks to its divergence structure and terms 75 and T} are easily computed,
giving
T = —/E(v)|f(x,v)|pmp and Ty = —/MXR(U)|f(x,v)|pmp.

Let us compute then the term 7. Using that 9;; f®'(f) = p~'0:;(|fP) — (p — 1)0: fO; f| P2
we obtain

71 = [ a0 — (o= 1) [ as0)0isor |7~

Performing two integrations by parts on the first integral of 73 it yields
4
/(Bf)‘?/(f)mp = **( — 1)/aij(v) 8i(fp/2) 3j(fp/2) mP
/{‘Pmp — Mxr(v)} [ m?,
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where @, ,, is defined in (2.8). We can also get, by a similar computation,
4
J@n®@me = =S 0-1) [y a0m57) 05 m577%) w0~

P2
+ [ {Pma) = M)} 1P .
Thanks to Lemma for any A < A, p we can choose M and R large enough such that
Omp(v) — Mxr(v) < =X+ 6{v)7T7. Hence it follows, using Lemma

(2.22) i My < —0p 1) [ (@ IPT L+ 07200 = PR/

- AHf”ip(m) - 5||<U> P fHI[),P(nL)'

(229)

1£||f||1[)/19(m) < —co(p — 1)/{<U>W|vav(mfp/2)|2 + ()T = PV, (mfP/?)|?y mP~2

pdt
ayto
AN iy = SN 0) 7 FIE -

from which we easily obtain ([2.19)) for any 1 < p < co. For p = oo, let g = mf, it is easy to
check that g satisfies the equation

_ _ om ~
g +v - Vag = ;5 (0)0ij9 — 2i5(v) = =0;9 + Pm,oo(v)g — Mxr(v)g,
by the standard maximum principle argument (for example, see [24]), we have
188(8) fllee, my < € FllLee, (m)-

This completes the proof of ([2.19)).
The proof of (2.20) and (2.21) follows easily from (2.22) by keeping all the terms at the
right-hand side and integrating in time. O

Define the operator B,, by B,,h := mB(m~1h), more precisely

8jh+{2(_11'j Qjj EMXR}hv~Vzh
m m m m

=: aijaijh + 5jajh + (C — MXR)h —wv-Vzh.

Observe that if f satisfies 0;f = Bf, then h := mf satisfies 9.h = B,,h. We then define the
operator B}, the (formal) adjoint operator of B, with respect to the usual scalar product L2
by

Bmh = dijé‘ijh — 25,@'

(2.24)

- 0; 0ij ~ 0;
B¢ =a;;0;;0 + {ij + 2ai; m} 99 + {C_lij 2T 9, S MXR} p+v-Vyd
m m m
=:a;;0i;¢ + B;0;¢ + (" — MxRr)p +v- V.
Remark that, denoting h; := Sg,, (t)ho and ¢; := Sp: (t)¢o, which verify the equations d;h; =
Bnhe and 0,¢r = B, ¢4, there holds
(htydo)rnrz = (ho, Gt)Hrr2.

Lemma 2.8. Consider hypothesis (H1), (H2) or (H3), and letn € N. Then, for any A < Am, 2,
we can choose M and R large enough such that the operator (B, +\) is hypo-dissipative in H*L?,
in the sense that

(2.26) V>0, [Ss: (t)lamnre) < Ce .

(2.25)
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Moreover there holds

(227 /0 NS8O g(arp 112 omp.taz L3 my 9 < 0
where we recall that H}(H, (m)) is defined in (2.4)).

Proof. We consider the case n = 0, the others being the same because V, commutes with B},.
Let 0y¢ = B}, ¢, where we recall that B, is defined in (2.25)). We have

/(Bfnéﬁ) b= / <‘_lz'j Oigm + QEjaij - MXR> ¢?

m

+/ <5Lij8;;n+bz‘) 3i(¢2)+/v'vx¢¢+/ﬁij3ij¢¢

= T1 +T2+T3+T4

Performing one integration by parts, we obtain

9, omdm - Om
TQ—/(%_ ;leraij moym g 7]nmc> 2.

m m

The term T3 gives no contribution thanks to its divergence structure in x. Moreover we deal
with Ty using that 0;;¢ ¢ = %&j (¢?) — 0;¢0;¢, which implies
Ty = —/aijaigsajdw %/EgﬁQ.
Finally, we obtain that
[B00=- [a50000+ [(oma - Mxa)e®

< —c / {W)"|P,V o> + ()T = P,)Vo|*} + / {Pm,2 — Mxr} ¢°.

where we recall that @, 2 is defined in (2.9).
Thanks to Lemma for any positive A < A, 2 and § € (0, A\yy2 — A), we can thus find
M, R > 0 large enough such that @, 2(v) — Mxr < —X —6(v)7T7. We can conclude that
1d
2dt

(2.28)

yto

[olZ: < =AllélZ: —dll() "= ¢l2:
2 at2
— o {40)F PV by + 10) 5 (T = P)Valany }-
From this inequality we easily obtain (2.26)) and also the regularity estimate
| 1, 00l iy dt 5 10l
Consider now the function h that satisfies 9;h = B,,h. Using that (Sg,, (t)h, ®)grr2 = (h,Spx (t)®) anr2,
this last estimate implies by duality (see (2.4]))
| 1, Ol e S 1012
Finally we deduce (2.27)) by using the fact that Sg, (t)h = mSp(t)f. O
We now investigate hypodissipative properties of B in high-order velocity spaces.

Lemma 2.9. Consider hypothesis (H1), (H2) or (H3), ¢ € N and n € N*. Then, for any
A < Am,1, we can choose M > 0 and R > 0 large enough such that the operator B + X is
hypo-dissipative in W*W£L(m), in the sense that

Vit >0, ”SB(t)”K%(WZ"’le’I(m)) < Ce M



16 K. CARRAPATOSO, I. TRISTANI, AND K.-C. WU
Proof of Lemma[2.9 Consider the equation
of=Bf=Bof —v-Vaif —Mxr/f

Remind that By f = Q(u, f) and remark that x-derivatives commute with the operator B, thus
for any multi-index o, 8 € N3, we have

0507 (Bf) = 07 (B9, f)

and

03Bof =05Q(u. f) = D Coyan Q05 11,052 f)

a1tas=a

and, writing v - V. f = v;0,, f,

Oy Bf = Boy f + > Conaa { Q07 1,077 ) — (077 v1) 0, (05 f) — M (97" xR)(05° f) }

a1 tas=a,|a1|>1
finally
O30 Bf = B(030; )
+ > Conr o { QO3 1, 05200 f) — (051 03) D, (95203 ) — M (95 xR) (05205 f) }

artaz=a,lai|=1

+ > Car,a {1 QO3 1, 05207 f) — M (93 xr) (95207 1)}

artag=a,|ay]|>2

We shall treat in full details the case £ = n = 1, the others £,n > 2 being treated in the same
way.

Case { =n =1 : Step 1. Derivatives in x. First, using the computation (2.22)) for p = 1, we
have

(2.29) ez o = [ {omate) = Mxn(o)} 7] m.

As explained before, the z-derivatives commute with the operator B, so for any multi-index

B € N3 we get from (2.22)) that

d
(2:30) G127 112w = [ (oma(0) = Mxa(o)} 027 m.

Step 2. Derivatives in v. We now consider the derivatives in v. For any o € N? with |a| = 1,
we compute the evolution of v-derivatives:

(07 f) = B(97 f) + QO 1, [) = (9501)0u, f — M (97 XR) S

From the previous equation we deduce that

d . o
100 Fllzy ,omy = /{B(aff) + Q05 1, [) = (950i) 8y, f — M (95 xr) f }sign(dy f)m
=T +To+Ts5+Ty+Ts,
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where

7y = [ (05 1) sign(@z £ m

T, = / (0%s;) D,y f sign (92 f) m

7, = [(@050) fsign@; 1) m

T = [[@0)0,.f sign(02 £ m =0

- / M(02xR)f sign(02 f) m
Again using the computation (2.22)) of Lemma [2.7] - 7| for p =1, we have
T = / {ma(v) — Mxp()}|o5 1 m

Concerning T, we use the following fact on the derivative of xg:

9xn )] = 3 |05x ()| < 5 Lrzpizon

R

which implies that
Ts < M—||IR<|U\<2R fllza, m)-

x,v

Performing integration by parts, we get
T+ T3 = /(‘3 a;; 0; f 0;msign(0y f) /8b8mf51gn(8°‘f)::A+B.

When m is a polynomial weight m = (v)¥, we can easily estimate T + T3, thanks to another
integration by parts, by

Ty Ty = [{(05a1) 0m+ 20585) dym} Fsign(@27) S 10)" ™ Pl o

where we have used [02a;;| < C(v)"*1,[02b;| < (v)7, |9;m| < C(v)~tm and |9;;m| < C{v)~2m.

We now investigate the case of (stretched) exponential weight m = e” ()" First, we can easily

estimate the term B, since 9;m = Cv;(v)°~?m, as

B S0 Iy om)-

For the other term, integrating by parts again (first with respect to the 9%-derivative then to
the 0;-derivative), gives us

0; 0 .
A= —/{a Gijm +b; m} 0% | m + /dij 0;(0m) 0; f sign(9y f),
and we investigate the last term in the right-hand side. Recall that
aij€i€j = 1 (v)| Po&|* + L2(0) (I = Po)E,

we decompose 0;f = P,0;f + (I — P,)0;f and similarly for 9;(05m), then a tedious but
straightforward computation yields

[ as 0u0zm) 0 signez 1
= / {rsti(v)(v)*7% +rs(s — 2)6 () |[v]*(V)*~* + 12521 (v) [v]* (V) >~} P00 f sign(02 f) m

+ / rsby(v) (0)*~2 (I — P,)02 f sign(92 f) m
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Recall that ¢, 1(v) = G, a%m + 2b; 8j'nm (see eq. (2.8), hence we obtain

T+ A< / (i () — Mxr(v)} |82 f|m

with
Y1 () = l_)jaij + 7502 (v) (V) 72 4+ 1sly (v) (V)2
+ 75(s — 2)01(v)[v]? (v)* ™4 + r2s20y (v)|v]? (v) 254
Thanks to the asymptotic behaviour of ¢;(v) and ¢3(v) in Lemma and arguing as in
Lemma [2.6] we obtain first that
lim sup ¥, 1 (v) < —rs(V)7™5 if0<s<2;

|[v| =400
2.31
( ) limsup ¥, 1(v) < —2r(1 —4r), if s =2;

|[v| =400

and then for any positive A < A, 1 and ¢ € (0, A1 — A) we can choose M, R large enough such
that .,1(v) — Mxgr(v) < =X\ —&(v)7He.

Putting together all the previous estimates of this step, and denoting ¢?(v) = @y, 1(v) when
m = (v)* and ¢ (v) = ¥y,.1(v) when m = e"")" | we obtain
(2.32)

d M
G108 ey o < [1670) = dxrb oz flm+ [ {Cto) o7t 4 O tncicant f1m

Step 8. Conclusion. Consider the standard norm on W} (m)

[ lw22my = I llze oy 0V fllLe oy + IVefllLs om)-

v T,V ©,v

Gathering the previous estimates (2.29)), (2.30) and (2.32]), we finally obtain

d o C
M hwssen < [ {wm,1<v>+c<v>v+ 1+MRle.v|ggRMxR}f|m

+ / {omaa(v) = MxR)|Vaf|m + / {07 (v) — MxR}|Vof|m.

Remark that, since o € [0,2], the function ¢9,(v) := ¢y,.1(v) + C(v)7T ! has the same asymp-
totic behaviour of ¢y, 1(v) (see eq. (2.11)) and eq. (2.14)). Then, arguing as in Lemma (and
(2.31))), for any positive A < A1 and § € (0, A1 — A), one may find M > 0 and R > 0 large
enough such that

c
Pm1(v) + C)T7 4 M EIRSIU\SQR — Myp < —XA—68()rte,
Om1(v) = Mxp < =X — ()77,

07 (v) = Mxg < —A—6(v)777.

This implies that

d

G lwiny < =Aflwtony = Sl 2 rgoyree):
which concludes the proof in the case ¢ = 1.
Case ¢ > 2 : The higher order derivatives are treated in the same way, so we omit the proof. [
Lemma 2.10. Consider hypothesis (H1), (H2) or (H3), { € N and n € N*. Then, for any

A < Apm,2, we can choose M > 0 and R > 0 large enough such that the operator B + X is
hypo-dissipative in HP H(m), in the sense that

Vt>0, [Sst)lzmymemy) < Ce .
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Proof of Lemma[2.10, Let us consider the equation d,f = Bf = Bof — Mxrf. Again we treat
the case £ =1 in full details, the others £ > 2 being the same.

Case { =n =1: Step 1. L* estimate. The L? ,(m) estimate is a special case of Lemma [2.7]
from which we have

U o < =0 (LIPS + (021 = P)0s P}
+ / {oma(v) — Mxr(v)}f2m?

(2.33) 2 dt

Step 2. x-derivatives. Recall that the z-derivatives commute with the equation, so for any
B € N3 we have

S 1021 o < —0 [(QVIPVLOINE + (01 2)(L = PV (@21 ) i

(2.34)
/ {oma(v) — Mxn(v)}02 FP m?

Step 3. v-derivatives. Let o € N® with |a| = 1. We recall the equation satisfied by 02 f
00y f = B(0y f) + QI7n, f) = (07vi) O, f — M(O)XR) [
From last equation we deduce that
3 101y = [ (BORD)+ @O, 1) — (9503) 00 ] — MO XR)F) 05 F i
T+ T+ T3+ T4+ T,

where

7, = [ B0 705 f

T, = /(33%) i f O fm?

7~ [(@ze) sorfm?

7=~ [0 0, 05 f i
— - [ M@ 03

We have from Lemma [2.7]

T < —co / ()P (02 I + (0)2(I — PV, (00 )2} m?
+ / {oma(v) — Mxr(v)}|05 12 m?

The terms T3, T4 and T5 are easy to estimate: for any ¢ > 0 we get

(2.36) Ty < 03 f13 oy + CENOS 132 ).

(2.35)

C
(2.37) T5 < M*||1R<\u|<2Ra fHL2 Sy TM— H1R<|v|<2R f||L2 (m)>
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and using Lemma [2.4}(b),
T; < C/@m_l |f1105 f|m?

=1 -1
< O T 05 113 oy + OO T FI22 o

Let us now deal with the part T5. Performing integrations by parts, we have:

T2 = /(aﬁdij)aijfaﬂfm2

(2.38)

- [@sipasosrm ~ [@an) 0, 0000w~ [(©5a,) 00081 o
=: — (To1 + Too + Tn3) .
We first deal with T5;. Using Lemma we have
T < C [ (o) (0511105 flm”
<) Vofliz om = Cl0)F PVuflTs om + CIH0) 2 (T = P)VofllZ2  my-

(2.39)

As far as Tyo is concerned, the integration by parts gives,
T =~ [ 02101 = ] 0, 0405 ) — (1= )mP s, 95(02.) 04(05 1)
= [ m e 0,5 0:0:0:5) ~ [ (@50s) 957 0,02 1)
— — (Too + oz + Tons) + oo,

Let us estimate TQQQ + 1~“223, using integration by parts,

Tosz + Thas
= [ 0m?[6) PG5 ) PV of +600) (= PV0505) (= PV

4 [ 0m?[00) P03 1) - PTG ) + (o) (1 = PIVLGES) - (1 = P)V.(051)]
= T~ [(O260) PLVL(021) - PVaf (1=

~ [@26a0) (= PIVL@21) (= POV.F (L= e

_ / [0(0) = £(0)] (I — )OO f) ”'lj;f (1= )m?

_ / [61(v) = £o(0)] (I — P,)V,0%f 2 J;g (1 - x)m?

—=: —To91 + Tog1 + . + Toos .

This means Toy = Thog + To21 + ... + Tho4. In order to estimate Thy, we need to estimate Too;
fori =0,...,4 (lemma plays an important role in those estimates). First of all, we obtain

Tooo < C W)V f] V(05 )] [xIm?

lv]<2

< )TV N3 oy + CEON@EVuF 2
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For T51, we have

Tos1 < C TPV [PV, (05 ) m?

lv[=1

< el (o) PoVu(05 DTz, my + CEIN T PoVuflia  m)-

For Th55, we have

Ty < C <U>W+1|(I_Pv>vvf| |(I_Pv)vv<83f)‘m2

[v|=1

241 o 241
<el ()7 (I = Po) V(07 HlIZz  omy + CEN@) T (T = P)VufllZz -

For Ts33, we obtain

Top3 < C ()7 + W)V T = Po) V(05 ) m?

[v[>1

a+2 fe! 3
<ellw) = (I = P)Vo@3 Dz m) + CEIW TV fIlT2 | -
Finally, for T5o4,
Tyos < C / ()7 4+ (@) IV(O5 U — PV f]m?
lv|>1
2 o) xi2
< el () 2Vu @5 FlITz | my + CENW) = (= Po)VuflLs (m)

This completes the estimate of Thy that we write, gathering previous bounds, as

ol o yt2 o
Ta2 < el ()2 PoVu (05 F)llzz, (m) +ell{v) 2 (I = Po)Vu (05 f)llzz., (m)
x a+2
CEIv)2 PV fllrz  m) + CE)(0) 2 (I = Po)Vofllrz  (m)-

x,v

(2.40)

Concerning T»3, we apply the same process as Tho: we first write
Tos = — /(33@1']‘) 9;f 9;m* xg
— /a;;el(v) P,NVym?® - PV, f (1 —x) 0% f

- /agzz(v) (I —P,)V,m?- (I —P,)V,f(1—x)0%f

- / [61(v) = £2(v)] (I — P,)05m? Y 'J;f 1-x)0yf
v- Vym?

- [ 16 - ) - Ry T -0 521
= T230 + ...+ T234.

Note that (I — P,)V,m? = 0, one can easily get Thzy = T3z = 0. Let us estimate the other
terms, by Lemma [2:4] we have

Tozg < C W7V f1105 fl x| m?

v <2

< el )20 13 oy + CEONEVur I3



22 K. CARRAPATOSO, I. TRISTANI, AND K.-C. WU

also
Tp31 < C ()72 PV, f]105 flm?
[v|>1
o y+2 U 4 o
< CEN) 2PV flZa oy +ellv) 05 flIZ2 s
and
Tozy < C ()72 + (0)) [(I — P,) Vo f|105 | m?

[v|>1

CENW) T (I = P)Vufll3z my +ll ()

Gathering previous 1nequaht1es we complete the estimate of Th3
Tos < e[ () 207 flI 72,y + €l {0) 8afllm L (m)
CE)()2 PuVuflIZz  omy + CE)I(0) 2 = (1 - PV, FlZ2 -

Putting together (2.35) to (2.41]) we get, using the fact that 1 + (v)7 4 (v)7+2972 < (p)7+o,
(242

5 FIOE s oy < (0= 9) [{WPIRT@NE + (0721 = P)T(05 DI} e?

’Y+U

6afHL2

’y+20 2

(2.41)

+ / {@m,gw) F e 4 C) L+ M%

Lr<po|<2r — MXR(U)} 05 f|? m?
+CE) [ {7 IRTAfP + (02| = PIT S} 0?
+/{C<U>’y—1 +MglR<|v<2R} |f|2m2+C(e)||8§f\|%z,v(m)

Step 4. Conclusion in the case £ = n = 1. We now introduce the following norm on H!H}(m)

11 gy = 1122y + IV STz, oy + 2 1V F L2 ()

which is equivalent to the standard Lv(m)—norm for any n > 0. Gathering estimates ([2.33]),

and ([2.42) of previous steps, we obtain
. dtnfnm(m < (o +0CE) [ {07 IPVLIP + )72 = PIVLs P

+/{1/JO( )+77M21R<\ |<2r — MxR(v )}f2m2
a0 3 [{@IRTAOLN - ROV |

+ [ {0h(0) = Mxr()} V.1
tnl-ate) 3 [ {0 IRTLGNE + ) - PV P} m?

lee|=1

[ {00+ MG tnctcon — (o) | (9.5

where we have defined
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Let us fix any A < A, 2. We first choose ¢ > 0 small enough so that —cp + ¢ < 0 and
—Am2 +¢e¢ < —A. Then we choose n > 0 small enough such that —co +7C(e) < 0 and
—Am,2 +nC(g) < —A. Hence the functions ¢! have the same asymptotic behaviour than ¢, »
(see (2.11), (2.14) and (2.16)). Then, using Lemma[2.6 for any XA < A, 2 and § € (0, A2 — ),
one may find M > 0 and R > 0 large enough such that

C
U () + 1 M 51 p<pu<or — Mxr(v) < =X = 0(0)7*7,
U (0) = MxR(v) < =X = d(v)7+7,

C
P2, (v) + Mﬁlemng — Mxg(v) < —X—d8(v)"He.

This implies
2 dt”fH _/\”fHHl(m) 6||f||H1(m v>(7+0)/2)
—K{||< VP 32y + 10) 5 (T = PV S 2y }
— KLY PV (Va £ By + 1) 5 (= P)Vul(Ta e |

K1) PV ) gy + 10) 2 (= PYVo(Tu Do
and then
1S8(&) fllmr ,m) < Ce_)\t”fHH%’U(my
This concludes the proof of the hypodissipativity of B + A in Hrl,v (m).

Case ¢ > 2 : The higher order derivatives are treated in the same way, introducing the (equiv-
alent) norm on H?H'(m)

e T > 010307 F113 -
1<|a]+|B|<max(€,n);|al <L 8] <n
and choosing 7 > 0 small enough as in the case ¢ = 1. O

Lemma 2.11. Consider hypothesis (H1), (H2) or (H3), £ € N and n € N*, and p € [1,2].
Then, for any A < A\, p, we can choose M > 0 and R > 0 large enough such that the operator
B+ X is hypo-dissipative in WPWEP(m), in the sense that

Vt Z 0, ||SB(t)H'@(W;L,pwf,p(m)) S Ce_At

Proof. Tt is a consequence of Lemmas [2.9]and [2.10] together with the Riesz-Thorin interpolation
theorem. O

2.5. Regularization. We now turn to the boundedness of A as well as regularization properties
of ASi(t). We recall the operator A defined in (2.7)
Af = Aof + Mxrf = (aij * f)Oijpn — (cx flu+ Mxrf,

for M and R large enough chosen before. Thanks to the smooth cut-off function xg, for any
q € [1,4+0], p > ¢q and any weight function m under the hypotheses (H1)-(H2)-(H3), we easily
obtain

IMxrfllLs,u-1/2) S N fllazem)-

Taking derivatives we get an analogous estimate, for any n,¢ € N,

”MXRf||W:'vqwfv‘1(u—1/2) N ”f”W:'vqwf»P(m)a
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Arguing by duality we also have
||MXRfHH;H;1(;r1/2) S ||f||H;H;1(m)'

Finally we obtain

% (L2, (m), L2, (7 2)) . p e 1, ocl;

(2.43) Mxg € ’
B (WEPWEr (m), Wir WP (u=t2)) . Vpe[1,2] n e N', (e N.

We know obtain the boundedness of A.
Lemma 2.12. Consider (H1), (H2) or (H3) and a weight function m.
(i) For any p € [1,00], there holds
A (L8, (m), L, (i1%).
(i) For anyp € [1,2] , n € N* and ¢ € N, there holds
A€ B (WIrW s (m), Wir W (= 1/2))
In particular A € B(E) N B(E) for any admissible space £ in ([2.2)).
Proof. Thanks to we just need to consider the operator Ay. We write
Aof = (aij = f)Oiju — (cx fp
and split the proof into several steps.

Step 1. Since v € [—2, 1] we have |a;j(v —v.)| < (v)72(v,)7T2, which implies |(a;; * f)(v)| <
(V)T fll 1 ((0)7+2). Therefore, for any p € [1, oc], we have

[(aij * £)0ipllru-172y S L1 (wyr+2)s
from which we can also easily deduce

10505 (aij * £l -2y S D 105702 FllLa (qoyr2).-

a1 <a
Integrating in the z-variable, we finally get
[[(aij f)aijunwfvafvp(u—lﬂ) S ||fHW§vPW§J(<U)w+2)~

Step 2. Assume 7y € [0, 1]. In that case we have |c(v—v,)| < (v)7(v,)” and the same argument
as above gives
[[(c* f)l‘”W;’PW,f’P(#—l/% S Hf”meWf’l((U)’Y)'
Step 8. Assume v € [-2,0). We decompose ¢ = ¢y + c_ with ¢ = cl}.j51 and c_ = cl|.|<;.
For the non-singular term ¢, we easily get, for any p € [1, o0],

[ (e * f)MHLg(;fw) SIS

L}
whence
||(C+ * f)/‘”w;hpwfm(#—lﬂ) S ”fHWC;‘PWU“
We now investigate the singular term c¢_. For any p € [1,3/]v|) we get
P
e * Dy umy = e s D20 5 [ | [ 0= 0 Lot | f(v*)|‘ W2()
Vx

v

</ f(v*)lp{ / |U—U*Ppllv—v*lélﬂlm(v)}

< p
S e
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where we have used that |y|p < 3 (so that the integral in v is bounded) and Lemma Taking
derivatives and integrating in x it follows

[[(c— * f)MHngpwfvP(u—lm) S Hf”WJZ“PWf’P((U)vy Vp € [1,3/]]).
Remark that by Holder’s inequality, for any ¢ € (3/(3 + ), o] we have

1/q
(e * F)(v)] < / |v—vmlw|<1|f<v*>|s( / v — .9 1.M|<1) 1 loe < I FNce,
Vy Vi

which implies
(e Ppllpgu-1r2) S I Flleg, Vo €L, 00,
and similarly
||(C_ * f),U”W;L,pr,p(#fl/z) /S Hf”WlT,“PW,fﬂv Vp € [1700]

Observe that in particular the operator T'f = (c_* f)u is a bounded operator from W W/ 1 (m)
to W IWEL (=12 and from WHWE(m) to W»°W 5 (u~1/2), thus by interpolation also
from W2PWEP(m) to WHPWEP(u=1/2) for any p € [1,00]. This together with estimates of
previous steps completes the proof of points (i) and (ii). O

We turn now to regularization properties of the semigroup Sz. We follow a technique intro-
duced by Hérau [I0] for Fokker-Plank equations (see also [22] Section A.21] and [L1]).

Lemma 2.13. Consider hypothesis (H1), (H2) or (H3) and let mq be some weight function
with v+ o > 0. Define
mo if v €10,1]; mo if v € [0,1];
e { WY Fme  ifye[-2,0). { Wy"Mme  if v € [=2,0).
Then there hold:
(1) From L? to H for £ > 1:

vt e (0,1], ISB @12 (ma ), 51t (myy < C 32
(2) From L' to L?:
vt e (0,1], 1S (L1 (ma),22(m1)) < CT°5.
(3) From L? to L*°:
vt e (0,1], 1S 2(L2(ma), Lo (myy) < C 5.

Proof of Lemma[2.13 We consider the equation d;f = Bf and split the proof into three steps.

Step 1: from L? to H*. We only prove the case £ = 1, the other cases being treated in the same
way. Let us define

Ft, £) = 1F1720m0) + 01t IV f 17 20m0) + @28 (Vaf, Vo f ) 12(mo) + @38 [V fl1 72 -
We now choose «;, ¢ = 1,2,3 such that 0 < ag < as < a; <1 and a% < 2aiaz. Then, there
holds
2F(t, f) > ast® | Ve fll72
Moreover, denoting f; = Sp(t)f, we have

d
@‘F(taft) =

(mo)*

| Fell 22 myy + 1 [V Fell 22 mg) + @1t Vo fell72 (o)

a a

dt dt
d

+ 200t (Vo fr, Vo fi) L2(me) + 2 2 5 Vel Vo) r2mo)

d
+ 303 % |V fill72(mg) + 3’ %vaft”%ﬁ(mo)'
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We need to compute

VL.Vl s = Y [102B0) @)+ 020) 02 (B}
la|=1

Let us denote f, := 0% f and f, := 95 f to simplify and recall that
a:(zl(Bf) = dijaijfw - Efw —U- vzfm - MXwav

and
95 (Bf) = @05 fo — cfo —v-Vafo — MxR[o
+ (05 ai;)0; f — (950)f = fo — M(O5xR) -
Using the same computation as in Lemma we obtain

/ (02(Bf) (001) + (02 )02 (Bf)} md = Ty + Ty + Ty + T,

where

Ty = —2 / iy O fy 05 fo i,
Ty = / (mo(v) — 2MxR(0)} fu fom?,

1= [ {00 258 - o0n, | oy i [ (ore+ b 1 o~ [ 1w
and
Ty = — /(agaij)aif 0 fomg.
For the term T7, from the proof of Lemma we get

~y+o yto

T15/<v>”+g\f$|va|m3§8t||<v> > O F L2 oy + T ) 05 T2 (o)

In a similar way, using |9%a;;| < C{v)7+1, |02, < C(v)” and |9;m?| < C(v)°~Im?, we obtain
for the second term

_ M o
LB /<”>7+0|va| |fa:|m(2) + / {<U>v Lt R1R§|v|§2R} | f11 /] m% - ||azf\|%2(m0)

LM ) e M
et [{@m+ 00+ Pinguan | 105 P md + e [ {0774 Finguican p 1723

Jyto

Fe T Vo2 20me) = 105 FI T2 (me) -

We now investigate Ty and, decomposing 0; fy = P,0; fo + (I — P,)0; f» and the same for 0, f,,
we easily get

Ty S et{11{v) PV (05 )2y + 1) % (1 = Po) V(02 F)lIZ 2o }

+ e [[(0)F Py (05 F)l gy + 10)7F (I = PV 1) 132me) }-

For the remainder term T3, arguing as in the proof of Lemma (term Tho in that lemma, see
(2.40)) gives us

x a a2 «
T3 < et{[[(v) 2 PoVu(05 P F2(me) + 10) = (I = Po) V(07 PlI72(mo) §
_1,— o t+2
+e T HI) 2 PoVu fl1F2me) +110) 2 (I = Po) Vo fll72(ng) }-
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Finally, putting together previous estimates we obtain
/ {Va(BAVof + Vo fVu(Bf)} m
S et{ o) 5Vt 2 agmg) + 100 PoVo(Va ) 30mg) + 10005 (1 = P)Vo( T3y |
+ O @) BV I gy + 1000 oV (Vo) R agmy + 160) 5 (1 = PV (T3 g |
+ C= ) PV I3y + 1000 5 (1 = P)Vu 32y }

+ Ce M 2 (mg) = 1V 122 (e

Using Cauchy-Schwarz inequality, we also write the following
205tV f, VoSV 12ma) < 02 (21Va fl2ng) + CT IVl Wy ) -

Moreover, picking up estimates of Lemma it follows that: for any 0 < A < A, 2 and
0 <d < A2 — A, there are M, R > 0 large enough such that,

2 a+2
JEn1mt < -a{l0)F PV ey + 166)F (T = POV}
7+o
= AlFlIZ2my) = 0ll(w) 2
also, for some g¢ > 0 to be chosen later,
2 242
/VU(Bf)VUfmg < _CO{||<U>2 vav(vvf)”%?(mo) +[{v) 7 (I - Pv)vv(vvf)”%%mo)}
yto
= AIVoflZ2(my) —0ll(v) = ¥, ftll%umo

+ C{I0)F PoVuf I20my) + 105 (I = P)Vuf 20 }
+ CllfZ2(mg) + Ceo 't VO F 22 (me) + Ce0tl Ve flIZ2 ()

f||L2(m1

and finally
[ 9aBH 115 < ~a{(0)F PuTuTe D +10)F (1= PITATa D) g}
yto
= MIVafl122(me) = 010) = Vafll72(me)-
We choose

5/2 9/2.

Eo = 527 a1 =& Qg 1= 64, Qg =&

Therefore, for any ¢ € [0, 1], we can gather previous estimates to obtain

a}_(t fi)

<+ (~co+ €2 + 052 1+ C) {{0) PoVofulZamy) + ||<v>”T“ (1= P)Vefil3m) }
12/ (o + C/2) {1(0)F PoVu(VofllZ(m) + 10) 75 (1= POVo(Vof) [Fm) }
+ 152 (—cOwaw){ ) PV LV f)[Fagny) + 1005 (1= POVo(Vaf) 22y |
= Ml oy = 310 F Follba o,y + CHE™2 + ) fela o

— APV fell 2o gy — tE%2 (5 - 051/2> 1(0) 5 Vo Fel 22 (o)

—1? (Aag/Qt —CeY? — 5 — 0%+ 54) ||V:vft||L2(mo) — 1392 ((5 — 61/2) [|{v) =

Vo fell 22 (mo) -
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We then choose € > 0 small enough such that the following conditions are fulfilled:
—co+ Cet? 4 Ce®/? + Ce® < —K <0,
—co+Ce'? < —K <0,
A4 Ct(e¥? + %) < —K <0,
§—Ce'? < —K <0,
Ce¥? 454 Ce%? — et < —K <.

We have then proved that, for any ¢ € [0, 1],

yto

d
£}-(t7ft) < _K/{HftHQLZ(ml) Vo FellZ2 mo) +t2||vacf|\2m(mo)} —01{0) = fell 2 oy

which implies

CENVawfill T myy < Fts fr) < F(0, fo) = [ follZ2(m,)-
We deduce

Vte (0,1], [|VewSst) fllz2ime) < Ct2 | foll L2my):
and the proof of point (1) for £ = 1 is complete.

Step 2: from L' to L?. We define,

Gt f1) = [ fill 31 gy + 0tV F (2, fo),
Ft, fi) = 1FellZ2(my) + 1 1V fell72(mg)
+ az tY(Va fi, Vo ft)12(mo) + 3 t6||vwft||2L2(m0)7

for some N to be chosen later. Thanks to Holder and Sobolev inequalities (in T3 x R3), there
holds
1@)7gl13e S 1Vawgl 72 I10) gl 2,
which implies that
11320y S NI gy IV (o 35
(2.44) S Cet ™| fl1 s gy + I Vao 72 (mg) + €8 110D 1720

y+o

S Cet™ P f 1 La(ma) + e IVao flT2(me) T €140} = flIZ2(my):

Jto . .
z my. Arguing as in step 1, we have

where we have used in last line that (v)°~tmg < (v)

yto

d ~
a}—(tvft) < —KI{HftH%z(ml) Vo fell 22 (mo) +t4||vzf|\2m(mo)} —01{0) = fell 2 oy

Putting together previous estimates it follows

d s
%g(tyft) < K| fell71 (my) + aoNEYTLF ()

yto

- K/aotN{quFLZ(ml) + Vo fill T2 (o) +t4||vmf||%z<mo>} = daot™[[(0) = fillFamy)
< =K fell71 (o)
+ aoNtN_lnftH%z(ml) + CaONtN+1||vvft||%2
yto

- K/aotN{HftH%Q(ml) F Vo Fell 22 me) + t4||fo||2L2(mo)} — 6aot™|[(0) = fillZ2 (-

) + COzoNtN+5 ||wat||2L2(

(mo mo)
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Choose t, € (0,1) so that NtV +! <« K’V then, for any t € [0,.],

yto

d _ Jto
%g(taft) < K| fill71(my) + Caot™ N fellTe(myy — Saot™ [(0) = fill 2 (my)
= K" a0t™ {90 Sl 2y + 1 F 32 |-

Thanks to (2.44]), for any t € [0, t.], we get

d — yto
219t f) < —(K = Ceaot™ )| fill 11 oy — 0™ (6 = COI(0) = fill 2 m,)

- aOtN+4(K“ - Cg)va,fo%z(mo)

Taking N = 16 and choosing € > 0 small enough then «y > 0 small enough, we get %g(t, fi) <0
then

Vte[0,t], CtOfillZz(m,y <G f1) < G0, fo) = [ foll 71 (ma)-
This ends the proof of point (2), using the fact that the norm is propagated for ¢ > t.,.

Step 3: From L? to L. Arguing by duality as in Lemma the proof follows as in step 2. O

We define the convolution S * Sy by
t
(Sl * SQ)(t) = / 51(7’) Sg(t — ’7') dT,
0

and, for n € N*, we define S by S = & « SE(=1) with S& = S.

Corollary 2.14. Consider hypothesis (H1), (H2) or (H3), and spaces £y, &1 of the type E or
E defined in (2.1) and (2.2). Then for any N < X < \p,p (where X is defined in Lemmas

07“‘2.11) there exists N € N such that
1(AS) ™M ()|l er.60) < Ce, vVt >0.

Proof. Tt is a consequence of the hypodissipativity properties of B (Lemmas and
2.11]), the boundedness of the operator A (Lemma [2.12), and the regularization properties in
Lemma together with [T, Lemma 2.4] and [8 Lemma 2.17]. O

2.6. Proof of Theorem Thanks to the estimates proven in previous section, we can now
turn to the proof of Theorem

Proof of Theorem[2.1] Let £ be an admissible space defined in and consider ¢, > 1 large
enough such that E := H, (u~'/?) defined in satisfies £ C &. Recall that in the
small/reference space E we already have a spectral gap in Theorem

Then the proof of Theorem is a consequence of the hypo-dissipative properties of B in
Lemmas[2.7] 2.9} 2.10} 2.11], the boundedness of A in Lemma[2.12]and the regularizing properties
of (ASB)(*N ) in Corol with which we are able to apply the “extension theorem” from
[8, Theorem 2.13] (see also |11, Theorem 1.1]). O

2.7. Proof of Theorem We give in this subsection a regularity estimate for the semi-
group S¢.

Proof of Theorem[2.3 A key argument in the proof of [8, Theorem 2.13] in order to obtain the
exponential decay (that gives point (i#) in Theorem is the following factorization of the
semigroup, for any ¢ € N*,

-1
(245)  Sa(D)(I —Tlo) = Y (I —T1o)Sp * (ASp)"9)(t) + (Sa(I — TIo) * (ASE) ) (#),

Jj=0
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which has been used with £ = N given by Corollary We now turn to the proof of (2.5)),
and recall that & = H}L?(m) and £_1 = H}'(H, }(m)). For sake of simplicity, in what follows,

we denote ey (t) := e. We write with £ =N +1
N
SA(t)(I =Tlo) = > (I —T)Sp * (ASE)*))(t) + (Sa(I — THp) * (ASp) ™) « (ASs))(#),
7=0

so that, for any Ap < Ap,2 and any A < Ay, where Ay < min{Ag, Ap} is given by Theorem [2.1]
we have

N
(2.46) MSA()(I —Tlp) = Y S;(t) + Sn41(t)
j=0
with
S;(t) = ((1 ~Tlo)exSs * (eAASB)(*7)> t), j=0,...,N,
and

Sn1(t) = (exSA(L —Tho) # (ex AS5) ™) (2 AS) ) (1)

We now prove that [|e*Sx(t)(I — o)l s _,,e) € L7(Ry) by evaluating each term in (2.46),
which in turn completes the proof of (2.5). Using Lemma we easily observe that thanks
to Lemmas 2.7 and 2.8 there hold

e ASs(t)l5e_s.e) < ClleMSa(t)le_s o),
and also
e ASs(1)[|(e.e) < ClleMSn(t)|5e.e) < Ce™ A=,
from which we first obtain
1M ASE (1) |e_y.e) € Li(Ry), [N ASs(t)||sce.e) € Li (Ry).
Therefore we deduce
IS0 ()86 .) = 1€} Sa(1) 861 0 € L7 (Ry),
and, for j=1,..., N,
I1S;(O)llse_y.e) < ClleMSat) 5.y * (exASE) "I (#)||5e.e) * | ASs(t) | e_s 2)
which implies by induction
I1S;(t)lB(e_y.e) € Li (Ry) % Li (Ry) % L7 (Ry) C L7 (Ry).
For the last term we first observe that, thanks to Theorem
1eMSA ()T — o) || z(p,m) < Ce PNt e LI(R,),
and also, thanks to Corollary
1(exASB) ™M (1) |51y < Ce™ PPN € LERy).
These estimates finally yield
[Sn+1(B) ey )
< Ol eMSa(t)(I = Tlo) | .y * (exASE) ™ (1) | s(e, ) * 1€ ASs (1) | (e, ) € L7 (Ry),
which completes the proof of ([2.5)). O
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3. THE NONLINEAR EQUATION

This section is devoted to the proof of Theorem|[I.1] We develop a perturbative Cauchy theory
for the (nonlinear) Landau equation using the estimates on the linearized operator obtained in
the previous section.

3.1. Functional spaces. We recall the following definitions

vt

1113, my = 1072

o ol yt2
FI32 6my + 1003 PV £l oy + 110} 5 (L = P)Vo 32 (s

and we also define the (stronger) norm

at2 o a+2
171y = 100) ™% F12a oy + 10 2 PV f (22 oy + 10) 5 (T = PV f 32 -

U,k k

Recall the space H2 L2(m) defined in (1.11]) associated to the norm

||f||$—t§Lg(m) = Z ||vif”%ng(m(U)—j(l—a/z))a
0<j<3

and also the space H3(H; ,(m)) defined in (L.13) by

> IVl as omioy-sca-orm;
0<5<3 '

Z /11‘3 ||Vif||§{qu*(m<1,>7j(170/2)).

0<5<3

Hf”%—tg(H;’*(m))

We define in a similar way the space H3(H, ,.(m)) using the norm H, ., (m) (instead of

H} .(m)). We also define the negative Sobolev space H3(H, !(m)) by duality in the follow-
ing way

Hf||;{g(H;1(m)) = sup (f, D)z r2(m)
' ||¢||9.¢2(H11)1*(m))§1
(3.1) -
= sup > VL VIO 12 12 ey -i-o/2)-

Iellag rry |, mn=To<j<3

The results on the linearized operator A in Theorems 2.I] and 2.3 are stated for spaces of the
type H3L?(m), but they can be easily adapted for the spaces H3L2(m) above, more precisely
we have:

Corollary 3.1. Consider hypothesis (H1), (H2) or (H3) and some weight function m, with
the additional assumption k > v+ 5+ 3/2 in the case of polynomial weight m = (v)*. Then for
any A < A2 and any A1 < min{ g, A}, there exists a constant C > 0 such that

Vt>0,Vf € HILI(m), [Sa(t)(I = Tlo) fllagzr2(my < Ce ™ (1 = Tho) flla¢3 12 (m)-

Moreover, for any A < A1,

00
/0 62/\t HSA(t)(I - HO)fH%—L?;L%(m) dt < CH(I - HO)fH?.tg(H;}‘(m))'
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3.2. Dissipative norm for the linearized equation. We construct now a norm for which
the linearized semigroup Sx(t) is dissipative, with a rate as close as we want to the optimal rate
decay from Theorem and also has a stronger dissipativity property.

Proposition 3.2. Consider some weight function m satisfying (HO), and let X := H3L2(m)
and Y :=H3(H), ,(m)). Consider another weight function m satisfying (H1)-(H2)-(H3) with
m < miv)~ (- /2 and denote X = H3L2(m).

Define for any n > 0 and any Ao < A1 (where Ay > 0 is the optimal rate in Theorem the
equivalent norm on X

(3-2) 1% = nll £1I% +/0 ISa(r)eT fII% dr.

Then there is n > 0 small enough such that the solution f; = Sx(t)f to the linearized equation
satisfies, for any t > 0 and some constant K > 0,

1d
5 ISa Ok < =XallSa®FlI% = KISsOfI5, vV fe X, Mof =0.
Proof. First we remark that the norm ||- |3 £2 (m) is equivalent to the norm || -[|33 2 ;) defined

in (L.11)) for any n > 0 and any Ao < A;. Indeed, using Corollary we have
1F13 <715 =l fII3 [ IS4 (7)€ Fll31 12 (m) d
M pzomy = W g L2 0m) = M Mg L2y T f 0 19ALT H3 L2 (m) 4T

<l I3z 22 () +/0 026720\17/\2%Hf”?—[ng(m) dr < (0 + OV f 133 12 (m)-

We now compute, denoting f; = Sx(t) f,

1d
5 dtmftmwm my = MASe fe)uzrzm) + 5 / aHS )X fill3gs 12 (my A7 =: T + L.

For I; we write A = A+ B. Arguing exactly as in Section [2 more precisely Lemma we
first obtain that A € B(H3 L2 (i), H3 L2 (= '/?)), whence

(Afes f)rsrzm) < Cllfellys 1z

Moreover, repeating the estimates for the hypodissipativity of B in Lemmas [2.7] and we
easily get, for any As < A < A, 2 and some K > 0,

(Bfs s rzim) < =M f3e 2 m) — K||f|\§{3(Hg,*(m)),
therefore it follows
L < =Ml fill s p2 gy — nKHftH%-tg(H}))*(m)) +0C| fill iz 12 (my -

The second term is computed exactly

1 [~ 9 .
=g ; EHSA(TH)@A2 Fli3e 12 gmy d7

:E/OOQHSA(T—i-t)e’\?TfH% 20 dT—)\Q/OO ||SA(T)€)\2Tft||23 2o AT
2/, o H3 L3 (m) | H3 L3 (m)

1 T=+400 o
3 {||SA(T)€AZTft||3{ng(m)} 0 >\2/ ISa(T)e>™ fill3gs 12 (my AT
T= 0 z

1 o0 T
= *§||ft||3{i;Lg(m) *)\2/0 ISA ()T fillFis 12 (my A

where we have used the semigroup decay from Corollary
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Gathering previous estimates and using that A > Ay we obtain
L+ < =X {77|ft||3-[ng(m) +/ 1Sa(1)e*" fillFa 12 (my dT}
, 0 ,

1
- nKHft”%-[g(H},,*(m)) +0C| fillFia £2 (my — §||ft||§-£2L§(m)'

We complete the proof choosing n > 0 small enough. O

3.3. Nonlinear estimates. We prove in this section some estimates for the nonlinear operator
Q. We will use the following auxiliary results.

Lemma 3.3. Let -3 < a <0 and 0 > 3. Then
A (v) ::/ 0 — 0] (0.)=0 dv, < (1)
]R?)
Proof. Let |v] <1/2, thus |v.| +1/2 <1+ |v —v,| and we get
A0 = [ ol o= v o, S [ ol o) do, S )"
R3 R3

Consider now |v| > 1/2 and split the integral into two regions: |v — v,| > (v)/4 and |v — v,| <
(v)/4. For the first region we obtain

[ bt o=l @) do S ) [ (00 do. S @),
R3 * 4 R3

For the second region, |v| > 1/2 and |v — v.| < (v)/4 imply |v.| > |v|/4, hence

Ly et 0= v )P doe S )70 [ 1 o= e doe S (o) S (o)
RPN PC: s Ho—vi<
R R
g
Lemma 3.4. There holds:
(i) For any 0 >~y +4+3/2
(@i (@) vivy] + [(aij * F)() vil + (@i + F©)] S @) fllzz (o)
(ii) For any 0 > (y+ 1)+ + 3/2 (where x4 := max{z,0})
(b % HYOS @) 1 fll 2 (gyo)-
(i11) If v € [0,1], for any 6" > v+ 3/2
(e @) S @) £l L2 oy
(iv) If v € [-2,0), for any p > % and 0" > 3(1 —1/p)
(e x @S @) 1f] e (wyery-

In particular, when v € (=3/2,0) we can choose p = 2 and 6" > 3/2; and when ~ €
[—2,—-3/2] we can choose p =4 and 68" > 9/4.

Proof. Recall that 0 is an eigenvalue of the matrix a;; so that a;;(v —v.)v; = a;5(v — v4)vs; and
a;j (U — v4)0;0; = a;5(V — v, )Vs;04;. Using this we can easily obtain, for any 6 > v+ 4 + 3/2,

[(aij * f)(v) vivj| = |/ aij (v — vi)vivj fu| = / i (U — Vi) Vi Vs f

Vs

< / 2w ] S 02 oy

Vs

S @2 2wy
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In a similar way we get
[(aij = £)(©) vil S @2 fll L2 (oyo-1),
and we easily have, since vy € [-2, 1],
[(ai; ) (@) < () f]
For the term (b * f), we recall that b;(z) = —2|z|7z; and we separate into two cases. When
v € [-1,1] we have, for any ¢/ > v+ 1+ 3/2,

(b F)(0)] < / T AT AR / (0 )T £

Vx (o
S Oz S @O 2 oyery-

When v € [~2,—1) we use Lemma [3.3] to obtain, for any ¢’ > 3/2,

L3 ((v)f=2)-

1/2

(6 * ()] £ Iv—v*l”+1<v*>“’<v*>9|f*|§(/ |v—v*|2<”+1><v*>‘29> 1122 oy

SO Nl 2 (qwyery-
Finally for the last term (c * f), recall that ¢(z) = —2( + 3)|2|” and separate into two cases.
When ~ € [0,1] then, for any 68” > v+ 3/2,

[(ex f()] £ \v—v*\vlf*IS/ {0) 7 (va) 7] fu|

S O ey S @O 2 ooy

When v € [-2,0) we use Lemma to obtain, for any p > % and for any " > 3(1 —1/p),

(p—1)/p
ENOIS [ o= ol @) (0. If*IS( [t w) 11z ey

S 07 1 f gz (qwyory
thanks to |y|p/(p — 1) < 3. O

We now prove nonlinear estimates for the Landau operator Q.

Lemma 3.5. Consider hypothesis (H1), (H2) or (H3).
(i) For any 6 > v+ 4+ 3/2, there holds

(Qf,9), M rzmy S Wl zzcwyoy 19l a . omy IRl a2, ()
(i) For any 6 >~v+4+3/2 and 6’ > 9/4, there holds

(Q(f,9), 9 r2(m) S 1 fllL2 ()0 ||9||%1}),*(m)’ if v € (=3/2,1};

and
(Qf,9), 9 L2(m) S IfllL2(wyo) Hg\ﬁ{;*(m) F 1 arr ooy 9l 22 my 4 v € [-2,-3/2].
Proof. We write

(Qf,9), M) L2 (m) = /aj{(aij * f)0ig — (bj * f)g} hm?
= —/(aij x f)0;g ajth — /(aij * f)@igaijh

+/(bj *f)g(')jth +/(b] *f)gh(?ij
=T +T>+ T3+ 1T,
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Step 1. Point (i). We estimate each term separately.
Step 1.1. For the first term, since the estimate for |v| < 1 is evident, we only consider the

case |[v| > 1. We decompose 0;g = P,0,9 + (I — P,)d;¢ and similarly for 0;h, where we recall

that P,0;9 = v;|v|72(v - V,g). We hence write

= /(aij & 1) {PuBig Padsh + Pudig (I — P);h + (I — P,)oig Padsh + (I — Po)dg (I — P,)o;h} m?
=:T11 + T2 + T13 + T1a.

Therefore we have, using Lemma

(v-Vyug) (v-V,h)
T = /(%‘ * fuiv, BE BE ’

S 122 ooy / ()72 (0] 2 [Vog| [Vh| m?

SIS

L2 (o) |l <U>%va|\1:g(m) | <U>%vvh”L%(m)-

Moreover

T = /(aij * fvi %T;g) {(I - P,)d;h} m?

L / (0) 720~ Vg | (T — Py)V | m?

a a+2
S Fllzz (wyo [(v) 2 Vg L2(m) [ {v) ™= (I — Py)V L2 (m),

and similarly

42 2
T3 S ||fHLg((v>9) [[(v) 2 (I - Pv)vaHLﬁ(m) [[{v) 2vvhHL%(m)'
For the term 774 we obtain
T = [(asy T = P} {1 = P)os1} e
S Wl [0 21 = PO gl (= PVoh|m?
42 a2
S A2z oy 1) 2 (T = Po)Vagllz my [1(0) 2 (I = Po)Vohl| L3 (m)-
Step 1.2. Let us investigate the second term Ty, and again we only consider |v| > 1. Since

9;m? = Cvj(v)?~2m?, where we recall that ¢ = 0 when m = (v)*F and ¢ = s when m = e"()",
the same argument as for T3 gives us

T = /(aij * f) {P,ﬁig 8jm2 + ([ — Pv)aig 6'jm2} h
=: Ty + Tho.
Then we have

Ty = C/(aij * fvivj (v)7 > (vh)T;g) hm

2

S IIF

L2((v)?) /<v>”+2<v>"‘2 0] 71 [Vugl [h] m?

yt+o—2 y+o

Sz ey 1K0) 2 Vagllzz omy 1(0) 72 Rl L2 (m),
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and we recall that v+ o — 2 < . For the other term we get
T = C [ s« £)us 07 2 (1 = P)osg) b
S Wy [ 10020721 = Po)Tag] ]

Jto Jto
S llzz ey 1{v) 2 (I = Po) Vgl Lz my () 72 BllL2 (m)
and recall that v+ o0 < v+ 2.

Step 1.8. For the term Ty,
T, = C/(bj * f)vj(v)7 " ghm®

<1l / () ()7L |g] || m?

ato Jyto

S Az oyey 1) = gll Lz omy 1 (0) 2 A
Remark that up to now we have obtained
Ty + T+ Ta S fllz2wyoy Ngllaz oy 102 m)

however in the estimate of the term T3 (see below) we will get a worst estimate (with the norm

||g||H,1 (m) instead of HgHHzl,*(m))

U, kK

Step 1.4. We finally investigate the term T5 and we get

T3 S 1Lz wye /<v>"’+1 lg| |V oh| m?

L3 (m)-

a+2

S22 oy 110D 72 gllze (my 1(0) 2 Vbl 2 (m)
SIS a1 () [(0)2 Vohl

We complete the proof of point (¢) gathering previous estimates.

L2((v)9) ||9| L2(m)-

Step 2. Point (it). Arguing as in Step 1, with h replaced by g, we already have
T+ o+ Ta S fllzyo) l9lF s
and we only estimate the term T3. Integrating by parts we get
15 = /(bj « f)gdigm® = —%/(C*f)fm2 - %/(bj « f)oym®g* = I+ 11
The term I] can be estimated exactly as Ty. For I, thanks to Lemma[3.4] we obtain
TS 2oy 10 2 gll7a gmys i v € (=3/2,1];

and
2 2 .
IS ez ey 10 2 gl T2 oy + 1 s oyory 10) 2 gllT2 (o, 37 € [-2,-3/2];
2 2
S U ey 1400 E 013y + 1 iy gy 10V 2 913
and that concludes the proof. O

Lemma 3.6. Let assumption (HO) be in force.
(i) There holds

(Q(f9), M)z rz(m) < 1 fllrz 2 omy 9llaz mx . my) 1Pl (a1 ().

therefore

1QU: Dz (151 myy S NIz Lzmy Ngllaes cay , (m)-
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(ii) There holds
(Q(f,9)s @)z rz(m) S I fll2z L2 (m) ||9||%3(Hgy*(m)) ez z L om) 190362 12 (my-

Proof. We only prove point (i¢). Point (7) can be proven in the same manner, using the estimate
of Lemma (7) instead of Lemma (#4) as we shall do next.
We write

(QUf,9), 9wz r2im) = (QUF9) D22y + Y (02Q(F,9),029) 12 12 oy 1910-/2),

1<|81<3

and

&BQ f’ Z CﬂhﬁzQ(aﬁlf’ 8529)'
B1+B2=p
The proof of the lemma is a consequence of Lemma [3.5] together with the following inequalities,
that we shall use in the sequel when integrating in x € T3,
1/2
(33)  Mulle(rs) S llullm2crsy,  Nullzors) S llullmrsy,  Nullzss) S HUIIHl(Ts IIUHL/z(T;)-

Step 1. Using Lemma [3.5}(ii) and (3.3)) we easily get, for § > v +4 + 3/2 and ¢’ > 9/4,
(QUf:9):9)r212(m) S /3 £ 1l 22 ((wpe) ||9||§157*(m) 1 ez yory 191172

Sz 2oy 190122 myy + 1 lmz2 iz oyery) 190122 22 (m)-
Step 2. Case |8| = 1. Arguing as in the previous step, from Lemma [3.5}(i7) and (3.3), it follows
(Q(f, a:fg)’a£g>L§L%(m(v)*(1*0/2))

N /Tg 1122wy vaQHHl (w)y--o/2) T ||f||Hg(<v)9’) HngHQL%(m(v),(l,g/z))

S Hf”Hng((v)@) ||ng||2L,2(H’1 L (m(v)=(=a/2)) + ||fHH§(H11)(<'u>9')) ||Va:Q”%ng(m(@—(l—a/z))~
Moreover, using now Lemma [3.5} (i), we get
<Q(35f7 9)73x9>Lng(m<v>—<1—a/2>)

< / v
T3

S IVefllmzrz ey 19z s gmewy-a-or2)) [VegllLz @z _gnew)-a-or2)).-

20y 191l E2 . (m@wy-a-2/2) [Vagllm1 (miwy-a-o/2)

Step 3. Case |f| = 2. When B3 = 8 we have
(Q(f,029),079) 12 L2 (m(v) ~20-a/2))
S / ||f||L2 o) Hv 9||H1 L (m{v)y—2(1=0/2)) + ||f||H1 Yo' HV g”L?(m(v —2(1-0/2))
S I lezrz oo & 9||L2 (HL , (m(v)—20-5/2))) + ||fHH2(H1 ||V 9||L2L2(m<v> 2(1-0/2))
If |B1| = |B2] = 1 then we obtain
(QOF £,0729),059) 12 L2 (m o) -20-a/2))
S [ 1921z Vgl

v, kK

(m(v)—2(1=0/2)) Hvig”H}}y*(m(v)*2(1*0/2))

SIVafllazez o) 1Vegll iz, mwy-20-0/2)) [V2gll L2 (a1, (mw) —20-/2)-

Uk ok
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Finally, when 8, = 8 we get
(Q(O7£.9),079) 12 L2 (mw) —20-2/2)

S /TS HvifHLg((v)@) ”g”H%’**(m(v)—Q(l—G/?)) ||Vig||H,g,*(m@)—z(l—a/z))

SIVafllzera o 19l s s . mwy-2a-0/2)) V29l L2 (a3, (mw) —20-272)

.
1/2 1/2

5 HVifHH;Lg(@)G) ”gHLi(H}) L (m(v)y—2(1=0/2))) Hg”H;(H}),**(m(w—?(l—"/?))) ”ViQHLi(Hl (m(v)—21=0/2)))-

v, %

Step 4. Case |f| = 3. When 3 = § we obtain
(Q(f,079),079) 2 L2 (mw)~20-2r2) S | f | 5202 ((0y) IV29Ze 11 (mwy-sa-o/2)
F 1 k2 oyeryy V291172 L2 (mgy -5 1-0/29 -
If |f1] =1 and |B2] = 2 then

(QUIT£,0529), 07 9) L2 L2 (m(w) —20-a/2)

< / IV.J]
™

S IVafllazez (o) IVagllnz

U koK

22y 1V29llm . miwy-30-0/2) 1V2gll b3 mey-sa-0/2)

(mwy-sa-r2) IVagll L2 (a1 (my-sa-oray).-
When |81| = 2 and |B2] = 1 then we get

(Q(A71,0529),029) L2 2 (m(w) ~2-a/2)

v,k

S /TS V2 fll L2 ()0 IVagllaz . (miw)-2a-0/2) IVEGN b1 (o) —2a-0/2)

1/2 1/2
S ||Vif||Hﬂch12)(<v>9) Hvlg”L/g(Hg’**(m@)*S(l*o/Z))) ||vxg||I—I/;(Hiy**(m<v>*3(1*“/2))) HviQHLg(Hg’*(m(u)*3(1*0/2)))-

Finally, when 1 = j, it follows
(a5 1, 9)7859>L§L%(m(u)—3(1—ﬂ/2))

S /3 V3 Fll 2 oyey N9l e __moy-s0-e/2y 1V gl 1 _(mwy-s-ar2
e ’

U,k k

SIVEFllz L2y 19l e (mwy-2a-0/2) ||Vig”Li(Hgﬁ*(m<v>*3(1*‘7/2)))'

U,k k

Step 5. Conclusion. We can conclude the proof gathering previous estimates and remarking
that, for any n = 0, 1,2, there holds

142 vto
[{v) =" VZgll L2 L2 (miv) -t va-or2y = [[{0) > Vil L2 L2 (m(v)-n1-0/2),

which implies

IVegllrz(mr . om)-erna-omy) SIVEglrz @ | miwy-ra-ar2)),
and observing also that

I fll a2 (wyoy S 11 128 L2 (m)
and

1N ez ce qoyeryy S Wz s omy)-
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3.4. Proof of Theorem We consider the Cauchy problem for the perturbation f = F —p.
The equation satisfied by f = f(t,z,v) is

of=Af+Q(f. f)
34 { Jit=0 = fo = Fo — p.

From the conservation laws (see (1.6 and (1.10)), for all ¢ > 0, IIy f; = 0 since Iy fo = 0, more
precisely [ fi(z,v)dzdv = [v;fi(z,v)dzdv = [|v]?fi(z,v)dedv = 0, and also IyQ(f:, fi) =
0.

Hereafter we fix some weight function m that satisfies hypothesis (H0). We also fix a weight
function myg satisfying the assumptions of Corollary (i.e. mo satisfies (H1), (H2) or (H3)
with the additional condition kg > v 4 5 + 3/2 if mg = (v)*°) such that mg < m(v)~(1=9/2),
Observe that this is always possible under the assumptions on m.

We will construct solutions on L$°(H2L2(m)) under a smallness assumption on the initial
data || foll#zL2(m) < €0. We introduce the notation to simplify

Xo=HoLy(m), Y i=Hy(H, . (m)), V' =H;(H, (m)),
Xo = HiL?}(mO)’ Yo = Hi(Hi,*(mO))a YO/ = Hi(H;i(mO))a Zp = Hi(Hé,**(mO))v

where we recall that these spaces are defined in ([1.11)-(1.13)-(3.1), and we also remark that
1fllzo S 111y

We split the proof of Theorem [I.1] into three parts: Theorem [3.9] Theorem and Theo-
rem [3.11] below.

3.4.1. A priori estimates. We start proving a stability estimate.
Proposition 3.7. Any solution f = fi to (3.4)) satisfies, at least formally, the following differ-
ential inequality: for any Ao < A1 there holds

1d
5 715 < =XallfII5 = (K = CllFll) £

for some constants K,C > 0.

Proof of Proposition[3.7 Recall that the norm || - ||x is defined in Proposition and it is
equivalent to the || - || x-norm. Thanks to (3.4)) we write

1d

——Ifllk = n(f. A T (Sa (M) £, Sa ()T A S, d
53111 = AP+ [ S\ LS, dr

oo
FLQUNx + [ SMDT LS QU 1), dr
0
=L+ I+ Is+ Iy
For the linear part I; + I2, we already have from Proposition that, for any Ay < Aq,
L+ I < =Xl fII% — KN fI5-

Let us investigate the nonlinear part. For the term I3, Lemma (m) gives us directly

Is S IS + 1A Al < A DD
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For the last term I, we use the fact that Iy f; = 0 and IQ(fy, f:) = 0 for all ¢ > 0, together
with Corollary [3:1] to get

/0Oo <SA(T)€)\2Tfa SA(T>6)\2TQ(f7 f)>X0 dr
< / 1S ()" Fllxo IS4 (N QUE )1 xo d

0o 1/2 0o
<(/ |SA<T>e*27f||%(OdT) (/ |SA<T>eWQ<f,f>§(OdT)

0o 1/2 0o
5(/ e-2<h-*z)f||f||%(0d7) (/ e2A2T||sA<T>Q<f,f>||§(OdT)

S I lxo 1QU )y
From Lemma (¢) we have

1/2

1/2

1R Dllvg S 11 llxo 11 2o-
Therefore, using that mg < m(v)~=9/2) so that || f|lz, < |||y, we obtain

L A IS < I 1115

and the proof is complete. O

We prove now an a priori estimate on the difference of two solutions to (|3.4]).

Proposition 3.8. Consider two solutions f and g to associated to initial data fo and
go, respectively. Then, at least formally, the difference f — g satisfies the following differential
inequality
ld 2 2 2
sl —9llx, < =Kl = glly, + Cllgllxo I — 9l

+C(llgllve + 1FI¥) 1f = gllxo 1S = gllve,
for some constants K,C > 0.

Proof. We write the equation safisfied by f — g:

W(f—9)=Mf-9)+Qg,f—9)+Q(f — g, )
(f - 9)\t:0 = fo — go.

Denote X := H3 L2(mg) where mg < mo(v)~(1=9/2) (see (3.2))). Then we compute

5l o, = =90 AU = 9o+ (SIS 00, SN — )z, e

+ 77<(f - 9)7 Q(ga f - g))Xo + /0 <SA(T)6)\2T(f - g)a SA(T)G)QTQ(ga f - g)>?a dr
+ 77<(f - g), Q(f -9, f)>X0 + /0 <SA(T)6/\2T(f - 9)7 SA(T)G)\QTQ(.]C -9, f)>Y0 dT
= T1 +T2+T3+T4+T5+T6.
Arguing as in Proposition [3.7] we easily obtain,
Ty + T, < —K||f —gl3,,

and also
Ts + Ty S lgllxo I1f = gl + lgllvo I1F = glllxo 1 = gllvo-
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Moreover, for the last part Ts + Tg, arguing as in Proposition and using Lemma (2), we
get

Ts+To S WS = gllxo 11z [1f = gllve S WS = gllxo 11y 1f = gllvo
which completes the proof. O

3.4.2. Cauchy problem in the close-to-equilibrium setting. Thanks to the a priori estimates in
Proposition[3.7 and Proposition [3.8] we are now able to construct solutions to (3.4) on L{°(X) =
L (H2L2(m)), assuming a smallness condition on the initial data.

Theorem 3.9. There is a constant eg = eg(m) > 0 such that, if || follx < €o then there exists
a global weak solution f to (3.4) that satisfies, for some constant C > 0,

||f||L°°([0700);X) + ||f||L2([0,oo);Y) < Ce.
Moreover, if Fy = pn+ fo > 0 then F(t) = p+ f(¢t) > 0.

Proof. The proof follows a standard argument by introducing an iterative scheme and using the
estimates established in Propositions [3.7] and thus we only sketch it.

For any integer n > 1 we define the iterative scheme
an:An+ n717n 80:/\0
:lf [T +QU™ ") Vn>1, and Otf f .
f\t:OZfO f\t:():fO

Firstly, the functions f™ are well defined on X for all ¢ > 0 thanks to the semigroup theory in
Theorem [2.1] and Corollary and the stability estimates proven below.

Step 1. Stability of the scheme. We first prove the stability of the scheme on X. Thanks to
Propositions [3.7, we prove by induction that, if €y > 0 is small enough, there holds

t
(3.5) V>0Vt >0, Aut) = |IfI% + K / 1F2 13 dr < 262,
0

Step 2. Convergence of the scheme. We now turn to the convergence of the scheme in Xj.
Denote d™® = f**1 — f" that satisfies

opd™ = Ad™ + Q(f",d™) + Q(d" ', f"), Vne N
0pd” = Ad” + Q(f°, ).

Thanks to Proposition Proposition and estimate (3.5)), we then prove by induction that,

for €g > 0 small enough, it holds

t
(3.6) Vt>0,Yn >0, Ba(t):=|ld7l%, + K/ 12215, dr < (C'e0)™",
0

for some constant C’ > 0 that does not depend on .
Therefore the sequence (f™)nen is a Cauchy sequence in L*° ([0, 00); Xo) = L>([0,00); H3 L2 (my)),
and its limit f satisfies (3.4]) in a weak sense. We then deduce that

£l zoe (j0,00):) F [1f 1 22 ([0,00)5v) < Ceeo,

by passing to the limit n — oo in (3.5). Moreover, since Fy = u + fo > 0 we easily obtain that
Ft)=p+ f(t) >0 (see e.g. [9]). O

We can now address the problem of uniqueness.

Theorem 3.10. There is a constant €9 = €g(m) > 0 such that, if ||follx < €o then there exists
a unique global weak solution f € L>([0,00); X) N L?([0,00);Y) to (3.4) such that

£l zoe (j0,00):x) + [ £l 2 ([0,00);7) < Ceo.



42 K. CARRAPATOSO, I. TRISTANI, AND K.-C. WU

Proof. Let f and g be two solutions to (3.4]) with same initial data go = fo that satisfy
11l oe ([0,00)5x) F I1f 1 22([0,00);7) < Ceo.

and
191l > ([0,00):x) + 9]l 2(j0,00):v) < Ceéo-
The difference f — g satisfies then

W(f—9)=AM[-9)+Qg,f—9)+Q(f —g. ),
with fo = go. We then compute the standard L2 L2(mg)-norm of the difference f — g
1d
2dtHf g||L2L2(m0) =(A(f—9), f =9 r2r2(me) +(QUg [ —9)s f — 9)L2L2(m0)

+(QUf =9, ), f = 9) 1212 (m)-
We write A = A+ B so that we obtain

(A(f=9), f—dr2r2(me) < —K|f — gH%i(H}“*(MO)) + O = 9122 12 (m)-
Moreover, Lemma [3.5}(ii) together with (3.3)) gives
(QUg: f —9), [ — 9 r2r2(mo) < Cllgllmzr2 (mo) If — 9||%5(H1},*(m0)) + Cllgll a2z (moy IIf — 9||%ng(mo)v

whence, integrating in time,
t
/ (Qgr, fr —97)s fr — gT>L§Lg(m0) dr
0

<mpmmW/MgMWm»

1/2 t
+C (/ ||gr||Hg(H;(m0))> ( Sl[l(?t] 1fr = 97112 22 (mo) +/0 Ifr — gr||2LgL3(mo)> .
T€l(0,

Thanks to Lemma [3.5}(i) it follows
QU =9, 1) f =9 212 (mo) < CIf — gllz2 22 (mo) | f 1| 222 (212

vk

mo)) I1f = gllzz (a1 (mo))

which integrating in time gives

t
/0 <Q(f7' - 9r, f7)7 f‘l’ - gT>LiL%(m0) dr

t
<’ ( Sup] ||f7' gT“LiL%(mg)) [) ”fT“Hf,(H,}’**(mo)) ||f7‘ - gT”Lg(Hll),*(TH,o))

T€[0,t

t 1/2 ¢
<C (/ L 12 **(mo))) ( sup || fr = 97172 22 (o) +/ I1fr = 97 ll72 o2 *(mo))> ;
0 ’ T7€[0,t] 0 ’

and observe that || f|1z2( (H2(H, )y S Ifllz(vy < Ceo. Therefore

2w (Mo0))

i — %M%%m+K/Hﬂ P T

< C/O Il f~ —ng%ng(mo)dT"‘CGO/o ||fT_gT||%§(H}),*(mg)) dr

t
+ Ceo ( sup || f- —QTHQLng(mO) "’/0 1 f~ —gr|%g(Hg,*(mo))dT> )

T7€[0,t]
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and when €y > 0 is small enough we conclude the proof of uniqueness by Gronwall’s inequality.

O

3.4.3. Convergence to equilibrium in the close-to-equilibrium setting.

Theorem 3.11. There is a positive constant €1 < eg so that, if || follx < €1, then the unique
global weak solution f to (3.4) (constructed in Theorems and |3.10)) verifies an exponential
decay: for any Ao < A1 there exists C' > 0 such that

V>0, |f@®)lx <Ce ™ folx,

where we recall that Ay > 0 is the optimal rate given by the semigroup decay in Theorem[2-1]
Proof. From Theorem [3.9] we have

t
sup [l FO% + / 1 dr < C&.
t>0 0

Using Proposition we get, if €1 > 0 is small enough so that —K + Ce; < —K/2, and for any
)\2 < )\17

1d

5 1% < =XallfIl% — (K = Ce)l£113

K
< =Xl fll% = S IF15

and then we deduce an exponential convergence

vi>0,  If®llx < e |l folllx,
which implies
VE>0,  If@)lx < Ce | follx.
O
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