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Resumen
En esta nota expositiva se presentan algunos resultados recientes obtenidos en [2] al respecto a la convergencia al

equilibrio de soluciones de la ecuación de Landau espacialmente homogénea con potenciales duros.

Abstract
In this expository note we present some recents results obtained in [2] concerning the trend to equilibrium for

solutions to the spatially homogeneous Landau equation with hard potentials.

1. Introduction

This expository note presents recent results obtained in [2] concerning the trend to equilibrium for solutions to the
spatially homogeneous Landau equation with hard potentials. It is well know that these solutions converge towards the
Maxwellian equilibrium (Gaussian measure) when time goes to infinity and we are interested in quantitative rates of
convergence.

Let us present the problem in a precise manner before going further on known results and on the main contribution of
[2]. In kinetic theory, the Landau equation is a model in plasma physics that describes the evolution of the density in
the phase space of all positions and velocities of particles. Assuming that the density function does not depend on the
position, we obtain the spatially homogeneous Landau equation in the form

(1)
{

∂t f = Q( f , f )
f|t=0 = f0

where f = f (t,v)≥ 0 is the density of particles with velocity v at time t, v ∈ R3 and t ∈ R+. The Landau operator Q is a
bilinear operator given by

(2) Q(g, f ) = ∂i

∫
R3

ai j(v− v∗) [g∗∂ j f − f ∂∗ jg∗] dv∗,
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where here and below we shall use the convention of implicit summation over repeated indices and we use the shorthand
g∗ = g(v∗), ∂∗ jg∗ = ∂v∗ j g(v∗), f = f (v) and ∂ j f = ∂v j f (v).

The matrix a is nonnegative, symmetric and depends on the interaction between particles. If two particles interact
with a potential proportional to 1/rs, where r denotes their distance, a is given by (see for instance [13])

(3) ai j(v) = |v|γ+2
(

δi j−
viv j

|v|2

)
,

with γ = (s−4)/s. We call hard potentials if γ ∈ (0,1], Maxwellian molecules if γ = 0, soft potentials if γ ∈ (−3,0) and
Coulombian potential if γ =−3. Our results concerns the case of hard potentials γ ∈ (0,1].

It is wellknow that, at least formally, the Landau equation conserves mass, momentum and energy (see e.g. [12]),
more precisely

(4)
∫

Q( f , f )ϕ(v) = 0 for ϕ(v) = 1,v, |v|2.

Moreover, the entropy defined by H( f ) :=
∫

f log f is nonincreasing, indeed, at least formally, since ai j is nonnegative
we have the following inequality for D(F) the entropy dissipation,

(5)
D( f ) : =− d

dt
H( f )

=
1
2

∫
R3×R3

f f∗ ai j(v− v∗)
(

∂i f
f
− ∂i∗ f∗

f∗

)(
∂ j f

f
−

∂ j∗ f∗
f∗

)
dv∗ d. v≥ 0.

It follows that any equilibrium is a Maxwellian distribution

µρ,u,T (v) :=
ρ

(2πT )3/2 e−
|v−u|2

2T ,

for some ρ > 0, u ∈R3 and T > 0. This is the Landau version of the famous Boltzmann’s H-theorem (for more details we
refer to [5, 11]), from which the solution f (t, ·) of the Landau equation is expected to converge towards the Maxwellian
µρ f ,u f ,Tf when t→+∞, where ρ f is the density of the gas, u f the mean velocity and Tf the temperature, defined by

ρ f =
∫

f (v), u f =
1
ρ

∫
v f (v), Tf =

1
3ρ

∫
|v−u|2 f (v),

and these quantities are defined by the initial datum f0 thanks to the conservation properties (4).
We may only consider the case of initial datum f0 satisfying

(6)
∫
R3

f0(v)dv = 1,
∫
R3

v f0(v)dv = 0,
∫
R3
|v|2 f0(v)dv = 3,

the general case being reduced to (6) by a simple change of coordinates (see [5]). Then, we shall denote µ(v) =
(2π)−3/2e−|v|

2/2 the standard Gaussian distribution in R3, which corresponds to the Maxwellian with ρ = 1, u = 0 and
T = 1, i.e. the Maxwellian with same mass, momentum and energy of F0 (6).
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1.1. Known results

The Landau equation (1) with hard potentials was studied in great details by Desvillettes and Villani [4, 5]. In
particular, concerning the trend to equilibrium problem, they proved a polynomial in time convergence of solutions to the
equilibrium by a entropy method. More precisely, they prove the following inequality

(7) D( f )≥min
{

δ1H( f |µ),δ2H( f |µ)1+γ/2
}
,

for all f satisfying (6) and some constants δ1,δ2 > 0, where D( f ) is the entropy dissipation (5) and H( f |µ) is the relative
entropy of f with respect to µ given by

H( f |µ) =
∫
R3

f
µ

log
f
µ

dµ.

The inequality (7) implies that solutions ft converges to µ in relative entropy

∀ t > 0 H( f (t)|µ)≤C( f0)(1+ t)−2/γ ,

for some constant C( f0)> 0 depending on the initial data f0, which implies, by the Csiszár-Kullback-Pinsker inequality,
a polynomial in time convergence in L1-norm

(8) ∀ t > 0 ‖ f (t)−µ‖L1 ≤C′( f0)(1+ t)−1/γ .

Another approach to the convergence issue consists to study the linearized equation. We can linearize the Landau
equation around the equilibrium µ , with the perturbation f = µ +h, hence the equation satisfied by h = h(t,v) takes the
form

∂th = Lh+Q(h,h),

with initial datum h0 defined by h0 = f0−µ , and where the linearized Landau operator L is given by

(9) Lh = Q(µ,h)+Q(h,µ).

Furthermore, from the conservations properties (4), we observe that the null space of L has dimension 5 and is given by
(see e.g. [3, 7, 1, 8, 10])

(10) N (L) = Span{µ,v1µ,v2µ,v3µ, |v|2µ}.

We can then study the long-time behavoiur of the linearized equation

(11)

{
∂th = Lh

h|t=0 = h0.

by studying spectral properties of the operator L.
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Consider the weighted space L2(µ−1/2) associated to the scalar product and norm

〈h,g〉L2(µ−1/2) :=
∫
R3

hg µ
−1 dv and ‖h‖2

L2(µ−1/2)
:=
∫
R3
|h|2 µ

−1 dv.

In this space, the operator L is self-adjoint, moreover we have

〈Lh,h〉L2(µ−1/2) =−
1
2

∫∫
R3×R3

ai j(v− v∗)
{

∂ j(µ
−1h)−∂∗ j(µ

−1
∗ h∗)

}{
∂ j(µ

−1h)−∂∗ j(µ
−1
∗ h∗)

}
µ∗µ dv∗ dv≤ 0,

since a is positive, which implies that the spectrum of L is included in R−.
From Degond-Lemou [3], Guo [7], Baranger-Mouhot [1], Mouhot [8], Mouhot-Strain [10], there exists λ0 > 0 such

that
〈−Lh,h〉L2(µ−1/2) ≥ λ0‖h‖2

L2(µ−1/2)
∀h ∈N (L)⊥.

This spectral gap estimate implies, for the linearized equation 11,

(12) ‖h(t)−Πh0‖L2(µ−1/2) ≤ e−λ0t‖h0−Πh0‖L2(µ−1/2) ∀h0 ∈ L2(µ−1/2),

where Π denotes the projection onto N (L).

2. Exponential convergence

As we can see above, the result (8) tell us that any solution to the Landau equation converges to the equilibrium
in polynomial time. Moreover, (12) gives us an exponential convergence to equilibrium, but only if the solution lies
in some suitable neighborhood of the equilibrium, when the linear term dominates the nonlinear one. One could then
expect to combine these two results : for small times one uses (8), then for large times, when the solution enters in
some appropriated neighborhood of the equilibrium in L2(µ−1/2)-norm, one uses (12). However, the spectral gap for the
linearized operator holds in L2(µ−1/2) and the Cauchy theory [4] for the nonlinear Landau equation is constructed in
L1-spaces with polynomial weight, which means that to be able to use this strategy, starting from some initial datum in
weighted L1-space, one would need the creation of the L2(µ−1/2)-norm, and this is not known to be true.

The main result of [2] is an exponential in time convergence of solutions to the Landau equation towards the
equilibrium, given by the following theorem.

Theorem 1 (Exponential convergence to equilibrium). Let γ ∈ (0,1] and a nonnegative f0 ∈ L1(〈v〉2+δ ) for some δ > 0,
satisfying (6). Then, for any weak solution (Ft)t≥0 to the spatially homogeneous Landau equation (1) with initial datum
F0, there exists a constant C > 0 such that

∀ t ≥ 0, ‖ f (t)−µ‖L1 ≤Ce−λ0t ,

where λ0 is the spectral gap of the linearized operator L on L2(µ−1/2).

The strategy to prove this theorem is the following:
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(1) New spectral gap estimates for the linearized Landau operator L in weighted (polynomial and exponential) Lp-spaces.
Theses estimates are based on the method of enlargement of the functional space of the semigroup decay developed by
Gualdani, Mischler and Mouhot [6]. More precisely, we xetend the known spectral gap on the small space L2(µ−1/2)
to bigger spaces of the Lp-type with weight.

(2) The Cauchy theory for the (nonlinear) homogeneous Landau equation developed by Desvillettes and Villani [5].

(3) The coupling between the linear and nonlinear theories: for small times we use the polynomial convergence from (8);
then, for large times, when the solution enters in some appropriated neighborhood of the equilibrium, we use the
exponential decay given by the new estimates for the linearized theory from (1).

This strategy was introduced by Mouhot [9] in order to prove the exponential convergence for the homogeneous
Boltzmann equation with hard potentials. Recently, Gualdani, Mischler and Mouhot [6] used the same approach to prove
the exponential convergence for the inhomogeneous Boltzmann equation with hard spheres.

Point (1) above is given by the following result from [2].

Theorem 2. Consider the linearized Landau operator L (9) with hard potentials γ ∈ (0,1] and the equation (11). Let
p ∈ [1,2] and a polynomial or exponential weigth m. Then, there exists C > 0 such that

∀ t > 0, ∀h0 ∈ Lp(m), ‖h(t)−Πh‖Lp(m) ≤Ce−λ0t‖h−Πh‖Lp(m),

where λ0 is the spectral gapr of L on L2(µ−1/2) and Π is the projection onto N (L).
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