THE NAVIER-STOKES LIMIT OF KINETIC EQUATIONS
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ABSTRACT. In this paper, we investigate the link between kinetic equations (including
Boltzmann with or without cutoff assumption and Landau equations) and the incompress-
ible Navier-Stokes equation. We work with strong solutions and we treat all the cases in a
unified framework. The main purpose of this work is to be as accurate as possible in terms
of functional spaces. More precisely, it is well-known that the Navier-Stokes equation can
be solved in a lower regularity setting (in the space variable) than kinetic equations. Our
main result allows to get a rigorous link between solutions to the Navier-Stokes equation
with such low regularity data and kinetic equations.
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1. INTRODUCTION

In this paper, we are interested in a problem in the theory of hydrodynamical limits: our
goal is to obtain a rigorous result of convergence of solutions to various kinetic equations
towards solutions to the incompressible Navier-Stokes equation. This problem can be seen
as a part of the program initiated by the 6th problem of Hilbert in 1900 at the International
Congress of Mathematicians. Indeed, the question is to understand the link between
microscopic and macroscopic descriptions of a fluid, and deriving macroscopic equations
from mesoscopic ones can be seen as an intermediate step of this program. We refer for
instance to the book by Saint-Raymond [55] for a detailed presentation of the subject and
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for mathematical results in the field. More specifically, in this paper, we seek to get a result
on the convergence of sequences of strong solutions to the rescaled mesoscopic equations in
which the connection between the kinetic and the fluid equations is as accurate as possible
in terms of functional spaces.

1.1. Kinetic equations. At the kinetic level, we shall consider Boltzmann or Landau
type equations for not too soft potentials. We denote by F' = F(t,z,v) the density of
particles, which depends on time ¢t € RT, position € T? (the unit periodic box) and
velocity v € R3. The dimensionless version of our kinetic equation reads

1
StOF +v- VoF = - Q(F.F),

where the Strouhal number St and the Knudsen number Kn are dimensionless parameters
which are natural in kinetic problems. Here and below, @@ can be the Boltzmann (with
or without cutoff) collision operator or the Landau collision operator. The Boltzmann
collision operator is an integral operator defined as

(L1) Qa(fisfo)i= [ Blo—ve0) (0L(R) = ()efs) dodu..

R3xS2
Here and below, we are using the shorthand notations fo = fa(v), (f1)« = f1(v«), as well
as (f2)' = fo(v') and (f1), = f1(v]). In this expression, v, v, and v/, v} are the velocities
of a pair of particles after and before collision. We make a choice of parametrization of
the set of solutions to the conservation of momentum and energy (physical laws of elastic
collisions):

/ /
V+ U =V + 0,

1.2
(12 of? + o2 = [0/ + [ 2

so that the pre-collisional velocities are given by

)_UFs |v—v*|0’ v),k:v—I—v*i|v—v>,<|07 yeS?
2 2 2 2

The Boltzmann collision kernel B = B(v—wy, o) only depends on the relative velocity |v—uvy|
and on the deviation angle ¥ through cos ¥ = (v — vy, 0)/|v — v.| where (-,-) is the usual
scalar product in R3. The form of the collision kernel depends on the type of collisions
that occur between particles. In dimension 3 in the case where particles behave as billiard
balls, known as the hard-spheres case, the collision kernel is proportional to the norm of
the relative velocity, namely

B(v —vy,0) = Clv — vy, C>0.

When particles interact through inverse power law potentials of type
(1.3) o(r) = r~ 7Y with  p e (2,400),

the collision kernel cannot be computed explicitly but Maxwell [49] has shown that the
collision kernel can be computed in terms of the interaction potential ¢. More precisely, in
dimension 3, the kernel B satisfies the following properties.

— It takes product form in its arguments as
(1.4) B(v—vs,0) = |v — vi]7 b(cos 9) .

— The angular function b is locally smooth, and has a nonintegrable singularity for ¥ — 0:
it satisfies for some ¢, > 0 and any ¥ € (0,7/2],

Cp . 1 . 1
(15) 191+28 < smﬂb(cos 19) < m with S = E € (0, 1) .
— The parameter ~ is defined as
-5
(1.6) =22 ¢ (=3,1).

p—1
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One traditionally calls hard potentials the case p > 5 (for which 0 < v < 1), Maxwell
molecules the case p = 5 (for which v = 0), moderately soft potentials the case corresponding
with 3 < p < 5 (for which —2s < v < 0) and very soft potentials the case 2 < p < 3 (for
which —3 < v < —2s). In this paper, we shall not consider the very soft potentials case,
meaning we shall restrict to 7 > —2s (see Remark 3 for a discussion on this restriction).

Grad’s cut-off assumption consists in additionally supposing that the angular kernel b is
integrable on the sphere by removing its singularity for small deviation angles ¥ (see (1.5)).
In that case, the Boltzmann collision operator is thus of the form (1.1) with

B(v —vy,0) = b(cosV)|v —vy|?  with /2 b(cos¥)do < oo and e (—3,1].
S

Notice that this in particular includes the case of hard-sphere collisions by taking the
angular kernel to be constant. Here again, we do not consider the very soft potentials case,
that is we restrict ourselves to v > 0.

In the case of the Coulomb potential (s = 1 and thus 7 = —3), the Boltzmann operator
does not make any sense (see [58] for example). The Boltzmann operator has then to be
replaced by the Landau one which can be obtained in the so-called grazing collision limit
after having made a cut-off on the Coulomb interaction. The Landau operator, defined
in 1936 by Landau [44] (independently of the Boltzmann operator), is used in plasma
physics and is an integro-differential operator given by

A1) Qe f2)(0) =0 [ aiy(v =) (f(0)0u, o(0) = fo(0)D, i(02)) o

where we use the convention of summation of repeated indices. The matrix a;; is symmetric,
semi-positive and is given by

(1.8) aij(v) = o[+ (% ’|”|’g> . 3<y<l.

Similarly to the Boltzmann equation, we have the following classification according to the
values of v: interactions are referred to as hard potentials if v € (0, 1], Maxwellian molecules
if v = 0, moderately soft potentials if v € [—2,0), very soft potentials if v € (—3,—2) and
Coulomb potential if vy = —3. We mention that only the case v = —3 is relevant from a
physical viewpoint and is the one that has been derived by Landau in [44]. Once more, we
shall only consider not too soft potentials, which correspond to v > —2.

In the three cases (Boltzmann with and without cut-off assumption and Landau), weak
formulations of the collision operators allow to obtain the following conservation laws:

19) LeUnwe@d =0 for ()= Lo,
as well as Boltzmann’s H-theorem that asserts that Boltzmann’s entropy of solutions

to these equations, namely / flog f dzdw, is non-increasing along time. Moreover, the

second part of the theorem states that any distribution minimizing the entropy is a local
Maxwellian distribution in velocity.

1.2. Hydrodynamic limit. All kinetic models leading to incompressible models are based
on a regime in which both the Strouhal and the Knudsen numbers are small. In order to
reach the incompressible Navier-Stokes equation, we shall work with St = Kn = ¢ < 1 (see
for example [8]). Our kinetic equation then reads

{ O Ff + e -V, F¢ =7 2Q(F¢,F°) in Rt x T3 x R3

(1.10) = Fg in T3 x R3.

\t 0
The Knudsen number is actually proportional to the inverse of the average number of
collisions for each particle per unit of time. Taking ¢ small has thus the effect of enhancing
the role of collisions. To relate our kinetic models to the incompressible Navier-Stokes
equation, we then look at equation (1.10) under the following linearization of order e:

F® = p+eps f°,
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where p is the global Maxwellian defined by
1 L
p(v) == ——75e" 2 .
(2m)}

The equation we are going to study on the fluctuation f¢ is thus the following:

Ofe+e - Vufs =e2Lff+e71I(f5,f°) in RF xT3 xR3
(1.11) { s .
fizo=fa=¢" YWFe —p)p2 in T°xR
with ) ) .
F(fl?f?) = /"L7§Q(H§flau§f2)
and
(1.12) Lf :=T(u?, f) +T(f, p?).

We say that a distribution f = f(x,v) has global mass, momentum and energy when it
satisfies

(1.13) /T [ fav) g S dode =0 for o(v) = 1,0, [v]?.

Conservation laws (1.9) imply that the perturbation f¢ satisfies (1.13) for all times ¢ > 0
if 5 satisfies

/1?3 o Ff (z,v) p(v)dvdz = /R3 p)e()dv for @) =1,v,|v|*.
For every f = f(z,v) we write the decomposition
f=Pyf+Pof, Pg:=Id-Pg,
where Py is the orthogonal projection onto
(1.14) Ker L= {3 (v), v1p% (0), vaps* (v), wsp (v), [of*u (v) |

given by the so-called hydrodynamic modes

NI

v]? —
(L.15) Py f(r,v) = {p[f1<x>+u[f1<x>-v+em<x>’ | 3}u (v)

2
/ flx,v) %
= [ oo ) do
]RS
2 _

:/ f(:n,v)’v| Su%(v)dv.
R3

Returning to (1.11), it is expected that as e goes to zero, the solution f¢ should converge
to an element of Ker L. This is actually proved in many situations (see Paragraph 1.4
below), and in particular the hydrodynamic modes of the limit satisfy the incompressible
Navier-Stokes Fourier system

where

Osu + u - Vu — vnsQAu = —Vp
OO+ u - VO — Vpeat A =0
divu =0
Vip+6)=0.

(NSF)

To define the viscosity coefficients, we introduce the two unique functions ® (which is a
matrix function) and ¥ (which is a vectorial function) in (Ker L)+ such that
|v !2

2
—Id—v®v and ,u_%L(,u%\Il) = 1)(? — ﬂ) .

pEL(uE ) = 57 5
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The viscosity coefficients are then defined by
1 1 1 2 1 1
UNS ::E/‘INL(MNIJ)M2 dv and  Vpeat 1:T5/‘P'L(M2‘I’)M2 dv.

1.3. Functional framework and notation. In order to treat the three cases (Boltzmann
with and without cut-off assumption and Landau equations) in a unified framework, we
introduce the space H* with s € [0,1] by: for s = 0 (corresponding to the Boltzmann
operator with cutoff)

(1.16) 1100 = 103 Lz

for s € (0,1) (corresponding to the Boltzmann operator without cutoff)

50 = [, [ [ beos il — v uw)l56) - f0) dodu. do
+/]R3 /R3 . b(cos V) |v — v|7 f(vi)? [

and finally for s = 1 (corresponding to the Landau operator) we define
x 2 2 2 bt 2
(L18)  f12ne = [ F A2, + 100 pr, Vuf, + [10) 3 1= pr,) V],

where pr, stands for the projection on v, namely

Vw e R3, pr,w = (w.v)v'
v]/ |v|

(1.17)

N

(V') — u% (v)]? do dw, dwv,

For every s € [0, 1], we also define the dual space (HS*)" endowed with the norm

|l 5=y == sup (o, [).
11l s <1
It is worth mentioning that for s € [0, 1] there holds (see [1, 36, 40] for the case s € (0,1),
the other cases being immediate),

1602 Fll gy + 1002 Ly < W Fllige S 122l -

We recall that if £ > 3/2, then H: C L. For m > 0, T > 0 and when E, is a Lebesgue
or Sobolev space in velocity, we define the space L>([0,T], H*E,) (with the notation
introduced in [20]) through its norm

2 L 2m|| I 2
||f||z°°([O,T],HmEv) T Z <k> ||f(7 k, ')HLOO([O,T],EU) .
* kez3

We have denoted by (f(k))rezs the Fourier coefficients of f in the space variable. When
more convenient, we will sometimes use the notation F,f for f. To lighten notation,
we shall often write LYH™E, for LP(I, H"E,) and similarly L H'E,, for L* (~I, H'E,)
when [ is an interval of RT. If I = [0, T] we will simply write L} H"E,, and L HE,.
Finally if 7 = oo and in the absence of ambiguity we write LY H'E, for LP(R*, H™E,)).
We will use the notation PP for the Leray projector onto divergence free vector fields. For

any triplet (pin, Uin, 0in) defined on T3 (considered as initial data, whence the subscript “in”)
we denote their projection onto incompressible/Boussinesq modes by

_ 2 3 _ _
(1.19) Pin i= £ Pin — 591n, Uin = Puin and Oin == —pin -
The kinetic counterpart of (pin, i, fim) Will be denoted
_ _ ~ v =3y 1
(1.20) Gin(z,0) 1= {Pin(l‘) + Uin(z) - v + Qin(w)HQ}w (v)

and if (p, u, 8) solves (NSF) with the initial data (pin, Uin, fin) then we will write

|U‘2—3} 1

(1.21) g(t,z,v) := {p(t, x) +u(t,x) v+ 0(t, ) w2 (v).
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We will say that the initial data gj, is well-prepared if writes under the form (1.20).
Note that 1f pm,um,em lie in H 2(T3) then the function g belongs to the functional

space LOOH;L? L2 N LTH§ L2 for all T' < T* where T™ is the life span of the solution to the
Navier-Stokes-Fourier system: more properties are prov1ded at the begmnmg of Section 3

below. Actually (1.21) shows that g also belongs to LOOHQHS *N LA H2H5 *. In what
follows, we shall denote by C any multiplicative constant that depends only on fixed
numbers and its value may change from line to line. The following shorthand notation

will also be useful in the following: for any real number m, the Sobolev spaces H™*°
and H™ 0 are defined by

feH™ «—3p>0, feH™",

By abuse of notation we shall denote by || f|| zm=+o the norm of f in H mEN with 7 arbitrarily
small.

1.4. State of the art. We give here a short overview of the existing literature on the
problem of deriving fluid equations from kinetic ones.

The first justifications of the link between kinetic and fluid equations were formal and
based on asymptotic expansions by Hilbert [41], Chapman, Enskog [18] and Grad [34].
The first rigorous convergence proofs based also on asymptotic expansions were given
by Caflisch [13] (see also [43] and [21]). In those papers, the limit is justified up to the
first singular time for the fluid equation. By using his nonlinear energy method, Guo [39]
justified the limit towards the Navier-Stokes equation and beyond in Hilbert’s expansion
from Boltzmann and Landau equations.

There have also been some convergence proofs based on spectral analysis in the framework
of strong solutions close to equilibrium introduced by Grad [35] and Ukai [57] for the
Boltzmann equation. In this respect, we refer to the works by Nishida [53], Bardos and
Ukai [9]. These results use the description of the spectrum of the linearized Boltzmann
equation in Fourier space in the space variable performed in [52, 17, 26] by respectively
Nicolaenko; Cercignani, Illner and Pulvirenti; Ellis and Pinsky. The approach in the present
paper as well as in [27, 16, 29, 30, 31, 14] are reminiscent of these ones.

Finally, let us mention that this problem has been extensively studied in the framework
of weak solutions, the goal being to obtain solutions for the fluid models from renormalized
solutions introduced by DiPerna and Lions in [23] for the Boltzmann equation. We shall
not make an extensive presentation of this program as it is out of the realm of this paper,
but let us mention that it was started by Bardos, Golse and Levermore at the beginning
of the nineties in [8, 7] and was continued by those authors, Saint-Raymond, Masmoudi,
Lions among others. We mention here a (non exhaustive) list of papers which are part of
this program [32, 33, 47, 48, 55].

More recently, some uniform in ¢ estimates on kinetic equations have allowed to prove
(at least) weak convergence towards the Navier-Stokes equation. Let us mention [42, 54] in
which the cases of the Boltzmann equation without cut-off and the Landau equations are
treated by Jiang, Xu and Zhao on the one hand and by Rachid on the other hand. In [11, 12],
Briant and Briant, Merino-Aceituno and Mouhot have obtained convergence to equilibrium
results for the rescaled Boltzmann equation (and also the Landau equation in [11]) uniformly
in the rescaling parameter using respectively hypocoercivity and enlargement methods.
In [12], the authors are able to weaken the assumptions on the data down to Sobolev
spaces with polynomial weights (see also [3] for the inelastic Boltzmann equation). Notice
that Briant [11] has combined this with the Ellis and Pinsky result [26] to recover strong
convergence in the case of the elastic Boltzmann equation. To end this part, we mention
the works [16, 14] in which the authors also obtain uniform in € estimates on the Landau
equation and Boltzmann equation without cutoff respectively and also obtain a result of
strong convergence towards the incompressible Navier-Stokes equation.

Finally, let us bring up more recent works that have inspired the present paper. First,
the paper [27] in which the second and third authors proved that the life span of the
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solutions to the rescaled Boltzmann equation (for hard-spheres collisions) is bounded from
below by that of the Navier-Stokes equation for € small enough. The main feature of the
proof was to perform a fixed point argument by using information on the limit system
since the starting point is the solution of the Navier-Stokes system (which is not the most
common viewpoint). Gervais [29, 30] extended the functional framework in which this
result holds. He proved a similar result in polynomially weighted spaces, his strategy being
a combination of [27] and of the one used in [12] by Briant, Merino-Aceituno and Mouhot
in order to get uniform in € estimates on solutions in polynomially weighted spaces. We
also point out the paper by Gervais and Lods [31] in which a unified framework is also
provided, which encompasses a large class of kinetic equations (including in particular the
result in [27]).

1.5. Main result. All the results mentioned in the previous paragraph concerning the
convergence of strong solutions are stated in functional spaces which are usual for the
study of strong solutions to nonlinear kinetic problems, namely in which there is an algebra
structure in the space variable, typically HY with ¢ > 3/2 (more generally ¢ > d/2 in
dimension d). Indeed the collision operator @Qp involves the product of f(x,v) and f(x,v")
at the same point x, so continuity of f seems to be required to make sense of the product
(this requirement is of course too strong: it is actually possible to relax it in some cases,
see the work by Arsénio in [4] for example). However it is well-known that the Navier-

1 d
Stokes equations can be solved for initial data with less regularity, namely HZ (HzZ in
dimension d). Our goal in this work is to analyze to what extent the assumptions one
makes on the initial data fg to the kinetic equation (1.11) can reflect this discrepancy
between the kinetic and the fluid frameworks.

1
The main goal of our analysis is thus to show that given an initial data in H? for the
incompressible (NSF) system, the associate solution to (NSF), as long as it exists, is the
limit of a sequence of solutions to the rescaled Boltzmann or Landau equation. More
precisely we are able to construct, on the same life span as the solution to (NSF), a sequence
of solutions to Ehe kinetic equation associated with initial data whose hydrodynamic part

converges in HZ to the given hydrodynamic profile, and whose microscopic part converges
1

to zero in H7 and may blow up (in a controled way) in H. for £ > 3/2. Let us also
underline that there is no smallness assumption on the initial data of the fluid system, and
we are able to treat the cases of non-global and global solutions to the fluid system in a
unified framework.

Theorem 1. Let 3/2 < ¢ < 2 be given. Consider (pin, Uin, Oin) € H%(']I‘?’) that are mean-

free, such that ui, is divergence free and pin + 0in = 0. Let (p,u,8) be the unique solution
~ 1 3

to (NSF) associated with the initial data (pi,uin,0n) in the space L°HZ N LAHZ, for

some T > 0.

Consider two real numbers o < 1/4 and B < 1/2. Let f5, be a family of functions such
that

Pofi, = ¥(e”|Dzl)gin

and Péffn is arbitrary, going to zero in the sense that
1
IPg fial

for some smooth, compactly supported function . Then, there is €9 > 0 such that for
any € < €, there exists a unique solution f¢ to the kinetic equation (1.11) with initial
data f5,, which belongs to the space LY HLL2 N L2 HLHS*, and it moreover satisfies, with

in» v

notation (1.21),

1
, T PPy fillpre e 0

v

1
H2L

s ——0.
LZHZHY™ =0

S—gll. 1+
If g”LoTOHg L2 15 =gl
Remark 1. The restriction ¢ < 2 is purely technical, the result would hold for any ¢ > 2 up
to some adaptations in the nonlinear estimates. Note that Pgf{ is a smoothened version
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of the well-prepared data gy, with the higher regularity norms allowed to blow up, in a
controled way, with . The threshold value 1/4 for the truncation parameter o comes from
technical considerations that appear throughout the proof. Note that such an assumption
(the cut-off in frequency space) is reminiscent of the setting chosen in [25] in the context of
the incompressible limit. The additional parameter 5 quantifies the possible blow up of
the HYH2* norm of the “microscopic” part of the initial data.

Remark 2. The proof of Theorem 1 shows that if the solution (p,u, #) exists globally in
time, regardless of the size of the initial data, the parameter £g may be chosen uniformly
in T (as is the case in [27]).

Remark 3. Throughout this paper, we only consider the case of well-prepared data in the
torus and also only the case of not too soft potentials for the kinetic equations. We believe
that using the same method of proof combined with arguments and estimates of [27, 14],
our analysis could be extended to a more general setting by considering the problem in the
whole space (also including ill-prepared data in R3) and very soft potentials for the kinetic
equations.

1.6. Sketch of the proof and plan of the paper. The idea of the proof follows the
method of [27], consisting in solving by a fixed point argument the equation obtained by
taking the difference between the kinetic and hydrodynamic equations, written in Duhamel
form. The main interest of this equation is that it no longer involves the kinetic unknown
but writes schematically as

(1.22) 0°(t) = D°(t) + S°(t) + Lo[0°](t) + W=[o°, 6°](¢) ,

where D?(t) depends only on the initial data gi, (recall that gi, is defined in (1.20)), S%(¢)
is a source term depending only on the hydrodynamical solution g , £[-] is a linear operator
depending on the hydrodynamic solution g, and W¢[-, -] is the usual, Boltzmann bilinear
operator (see (3.10) below). The difficulty then consists in proving that D¢(t) and S°(t)
are small, and that W€ is bilinear continuous, in a low regularity framework. An additional
difficulty comes from the fact that £° is not small if gi, is not small: since smallness is
necessary for the fixed-point to work, we devise a Gronwall-type argument to get round
this difficulty (in this regard also, the proof differs from the one presented in [27]).

In Section 2, we give some useful tools to estimate each part of equation (1.22) (spectral
decomposition, semi-group and nonlinear estimates). In Section 3, we reduce the proof of
Theorem 1 to a number of intermediate estimates. These estimates are proved in Sections 4
and 5.

Acknowledgments. KC was partially supported by the Project CONVIVIALITY ANR-
23-CE40-0003 of the French National Research Agency (ANR). IT was supported by
the French government through the France 2030 investment plan managed by the ANR,
as part of the Initiative of Excellence Université Coéte d’Azur under reference number

ANR-15-IDEX-01.

2. PRELIMINARIES

Our approach heavily relies on previous results on the spectral analysis of the linearized
kinetic operator
Af = %L—lv‘vx
€ €
in Fourier space for the space variable = (see [52, 26, 29, 31]), where we recall that L is
defined in (1.12). We denote by U®(t) the semi-group associated to A®.

Taking the Fourier transform in the space variable, we denote, for all k € Z3,

~ 1 1
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and US(t,k) := e** (%) so that Us(t) = F,;'U*(t,-)F,. We also denote

(21) Wi, )0 = L [ U~ O (0, o) 0

where Dgym(f1, f2) == (D(f1, f2) + T(f2, f1))/2 denotes the symmetrized form of T, so
that (1.11) takes the Duhamel form

(2.2) f(@) = U (@) fin + VELf5, £10) -

In Fourier space we have

(fr, £ F) = /Uat—t BBy (28, fot)) ()

where

sym(flan Z I‘sym fl k k) f2( ))

k'ez3

e[ fr, fo)(t) = Fy WO Lfu, fol (8 ) F
It turns out that there is a complete description of the operator U¢: this goes back to [52, 26]
for the Boltzmann hard-spheres kernel, [59] for the Boltzmann non-cutoff (resp. Landau)
kernels with hard and moderately soft potentials v+ 2s > 0 (resp. v + 2 > 0), and [60]
for the Boltzmann non-cutoff (resp. Landau) kernels with very soft potentials v + 2s < 0
(resp. v+ 2 < 0). For the not too soft potentials, we also refer to the paper [31] in which
the authors provide a more modern spectral approach.
Let us start by noticing that

Observe that

(2.3) Ue(t,k) = 0" (i,ak) .

Roughly speaking, for |k| < k small enough, the operator Al(k:) := L —iv - k can be seen
as a perturbation of L. In particular it can be proved (see [26]) that the 5-dimensional
kernel of L recalled in (1.14) splits into 4 eigenvalues (the first one below is double) that
satisfy for all |k| < K

v
Ans(k) = —ons k2 +ns(k), vns >0, iws(k)] < oo |k|?
(24) 2 Vheat 2
)\heat(k) = _Vheat|k| + 'Yheat(k)7 Vheat > 0, |’Yheat(k’)| < 5 |k|
and
Awavei(k’) = :|:ZC|]€| - Vwavei’k|2 + Vwavei(k‘) 5
2.5
= 0> 0. Ve > 0, e ()] < L85 g2
Moreover, the associate projectors P, can be written (where * stands for NS, heat, or wave+)
k k
(2.6) Py =P, <|k’) + |kIP, (w) + |k[PPE(K),

with PJ* bounded linear operators on L? with operator norms uniform for |k| < k. We even
have that P?(k/|k|), PL(k/|k|) and 732(1{:) are bounded from (HS*)" into H3* uniformly
in |[k| < k. We refer to [31, Theorem 1.6-(2)] for this property (note the following
correspondance of notation H®* = H3* and H® = (H3*)"). We also have that if x # «/,
then 732733 = 0 and the orthogonal projector Py onto Ker L satisfies

k
(2.7) be Y
*E€{NS,heat,wavet} ( |k’ )

Actually PPg(k/|k|) is the projection onto the 2-dimensional space spanned by v — pry v
for any k (this corresponds to the divergence free condition), and

Pﬁeat(w)f( D=:(-1+3 (|v|2—3))u%(v)/Rs(—1+ (Jwl? = 3)) 2 (w) f(k, w) dw
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Finally
ngavei(@)f(k7 v)
3 k 1 k
(HEW vtz (W—:a)) @)/R (um W (|w|2—3))u2( VF(k, w) dw

Thanks to (2.3) and to this spectral study, we deduce as in [9, 27] that U can be decomposed
as follows:

(2.8) US(t) = US(t) + U ()

where U E’b(t) corresponds to the contribution of the low frequencies in the right part of
the plane:

. clk t
(2.9) U=(t, k) := X(M) 3 MEDZ D, (k)
K *E{NS,heat,wavet}
where y is a fixed smooth, compactly supported function. Moreover, since we consider not
too soft potentials, there is A\g > 0 such that uniformly in k € Z3

(2.10) IOt )2z Se 0=, W20

Notice that in the case of very soft potentials, the exponential decay should be replaced by
an algebraic one (see for example [60]). In the study of the limit € — 0 of (1.11), it will be
useful to decompose Ug’b(t) into a part independent of € and a remainder, which will be
shown to go to zero in a sense to be made precise later:

(2.11) Us,b = Unsr + ﬁlf]SF =+ vaave?

where in Fourier variables
~ o 2 k _ k
UNSF(ta k) = s tpo (“{’) +e hest ] tpheat( )

||
(2.12)

ittt ) = () P P ().
+

According to (2.1) and (2.8), we can also decompose

(2.13) UE = U0 4 PeF
where
Q1) E (WA LI0) 0= T [ 05— O, ) ()
and
(2.15)
7 (1911, 200) )= () S [ Pt (10, £ 8)

where the sum runs over {NS, heat, wavet}. In the interest of the limit ¢ — 0, this can be
again decomposed as in (2.11), as follows:

(2.16) U= = Unsp + Uiisp + Vinve

where writing U, [f1, f2](t) = Fo (Wl f1, fg](t)) and recalling that PoI'sym, = 0,

Unselfi, ol (6 k) == Y / “f'2|k|731(‘k|) Loy (f1(), 2(£) (k) ',

*€{NS,heat}

\I"E)nge[f17 fQ](ta k) = X(%>

K
t—t’

t
X Z/ e)\wavei(fk') 2
+ 0

Puaves (€5) Toym (1), f2(t')) (k) dt’.
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It can be checked that the solution g constructed in (1.21), starting from gj, as defined
in (1.20), satisfies

(2.17) 9(t) = Unsr(t)gin + ¥nsrlg, g](t) -

3. PROOF OF THE THEOREM

Let us start by presenting the functional framework in which we shall develop our
proof. Let 3/2 < ¢ < 2 be fixed. Recall that o < 1/4 and 8 < 1/2 have been introduced
in Theorem 1. In the following, we shall assume without loss of generality that o > 0
and 5 > a(f —1/2).

We now define for any interval I of R the space

(3.1) Xf = {f € LFH{LE O LIHLHY"

1 £llas < +oc

which we endow with the norm

1
= fll~ + ||P + —||Pg
1725 HfHL?Hx%L% H OfHL?Hx%Hi’* \ﬁ” OfHL?Hm%HS’*

(3.2)
1
+ & (U Vg + 1P S g aerz + 2P S i)

In the following we write X% := X[% e

1
Remark 4. If f = f(x,v) is a function in HZ L? and if v is a smooth, compactly supported
function on R3, then the sequence f¢ := (% D,|)f goes to zero in e® H.L? because of
the assumption 5 > a(f — 1/2): indeed

—a(l—1
NNy SRy -

v

1
Recall that we consider well-prepared initial data g;, in H7 L?) and the associated maximal

~ 1 3
fluid solution g € L HZ L2 N L2.HZ L2 for T < T*, where the maximal life span T* > 0
satisfies
=00.

i
A HgHL%HIgL%

This solution satisfies

(33) loll

)

< e

ol g Sl y
T T ~v T Hu xz Ly
where the constant may depend on 7™ but is uniform if 7% = co (see [28]). We refer for
instance to [5, 45, 46] for more on the Navier-Stokes equations. Note that as mentioned in

~ 1 3
Section 1.3, actually g belongs also to L HZ HS* N LQTHEHi’*, with the same bound.
We then build a family of initial data f{ to Equation (1.11) such that on the one
hand P fS = (e¥|Dy|)gin for some smooth, compactly supported function v, and on
1
the other hand Pg ff, is arbitrary but goes to zero in H7 L2 while e°Pg f£ goes to zero
in HL2. Note that as pointed out in Remark 4, Pyf, actually goes to 0 in e H.L?
(since 5 > a(f —1/2)). Our goal is to prove that the solution f¢ of (1.11) with data f{,
converges to g as stated in Theorem 1, on the same life span as g.

The first step consists in replacing g by a smooth solution to (NSF) in the following
way: let us define

v]? — 1
g (t,x,v) = {pa(t,x) +u(t,x) - v+ GE(t,m)HQS}/ﬂ(U)

where (p%, u®,6%) solves (NSF) with the initial data ¥(¢%|Dg|)(pin, Win, Oin). It is classi-
cal (see for instance [27, Proposition B.5], and [19, 5, 45] for more), that for ¢ small
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~ 1 3
enough, (p°,uf,0°) belongs to L HZ L2 N LAHZ HS*, and there holds

3.4 f—gll- 1 +¢ - 3 — 0.

(3-4) lg gHL%OHéL% lg gHL%HEHi,* —

Note that in particular

3.5 |l 1 — - 1 and e 3 e 3 .
I LT W T B S

To prove Theorem 1, it thus suffices to prove that

e re e re
lg® —f ||Z%OH§L%+||9 f HL%HI%H?* —7 Y

Note that by propagation of regularity (see again [27, Proposition B.5]) there holds, for
any m > 1/2,

19Uz gz + 19 g s S WPoSi gz exp (U™, )

T x v
(3.6) S IPofallmprzexp (Clal?, 4 )
LZHZHy”

€ 2
S IPofillmpcz exp (Cllgwl?y )

x

due to (3.5) and (3.3). In particular ¢° satisfies
”gEHZ%oH;nL% + HgE”L%H;"JrlHi’*

< —a(m=3) . ( 112 )
~ € 2 HglnHHz%L2 exp CHglnHH%L2 .

v x My

(3.7)

By the standard interpolation inequality

1 1
_ < 3 b
(3.8) Pl S TR ooy TR, oy

Vn >

)

| =

one also has

(3.9) 9711~

< c—alm=3)| .
T ml S e : i Hgm”H

2
x%L% €xp (CHQIHHHI%L%) :
It is also worth recalling that g = Pog® so that [|g°(¢, z, )| s < [l9° (¢, 2, )| 12
In what follows, we shall look for a solution f¢ to (1.11) under the form f¢ = g° + 6°.

Since as recalled in (2.17)
9°(t) = Unsr(t)Pofin + Unsrlg™, 9°(1)
elementary algebraic computations lead to the following equation on 0°:

0%(t) = (US(t) — Unsr(1))Pofiy + US(t)Py £,

m

(3.10) + g%, g71(t) — Ynsrlg, 9°1(2)
+ 20 g7, 6] (t) + WE[6°, 6] (1) -

As we shall see, the main point is to be able to solve the equation on §° although the
initial data blows up (in a controled way) as e — 0. Our method of proof will enable us
to prove that the equation has a unique solution on the same time interval as g° hence
as g, at least for € small enough. In doing so we shall also prove that §° converge to 0

= 1 3
in LSHZL2NL3HZ L2,

The method will rely on the following fixed point lemma.

Lemma 3.1. There is a constant Cy > 0 such that the following holds. Let X be a Banach
space, L a continuous linear map from X to X, and B a bilinear map from X x X to X.
Let us define

I£] = sup [[Lzf| and [B|:= sup [[B(z,y)]-
lzll=1 lel=llyl=1
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If ||| <1, then for any xo in X such that
- lch?
4l|B|
the equation © = xg + Lx + B(xz,x) has a unique solution in the ball of center 0 and

1—[I£]l
———— and there holds ||z|| < Co||zo]| .
2||8]|

In the next sections, we shall provide all the necessary estimates in order to implement
this fixed-point argument to solve (3.10), which we re-write in the following form:

6°(t) = D(t) + S°(1) + L[O°](2) + W°[6%, 6°](2) ,
where the data D¢, source S¢ and linear £°[0°] terms are defined by
D(t) == (U*(¢) — Unsr (1) Pofi, + US(t)Pg fi
(3.12) S°(t) := ¥g", g°J(t) — Wnsrlg™, 671(2)
LE[6°](t) == 2W*[¢°, 6°](F) .

Sections 4 and 5 will be devoted to the proof of the following result.

(3.11) lzollx <

radius

Proposition 3.2. Under the assumptions of Theorem 1, the following holds.
(1) For any t € (0,T) there holds

(. — e < e
U5~ )P Ollx;, < 1P,
(2) The data term goes to zero globally in time:
1- 1 1
Dl < b lanl y  + PSSy, + 1P Fallness — 0.

(3) The source term goes to zero in Xf.: there exists a nonnegative increasing function ®
such that

1_
150y <= @ (llgll 3 ) = 0-

27 e—0

(4) The linear term satisfies the following continuity estimate for e small enough: for all
intervals 1,
1250 g S 00 (0 g + 1%, 3+ PN e s + N9 | cargaz)
I

2
s L3

(5) The nonlinear term satisfies the following continuity estimate: for all intervals I,
e[ f1s folllaee S I fllae ll follas -

Let us investigate how Proposition 3.2 ensures the wellposedness of (3.10) in XF and
the convergence of 0° to zero, thus proving Theorem 1.

Proof of Theorem 1. We shall check that (3.10) takes the form required by Lemma 3.1.
Thanks to Proposition 3.2—(2),(3) and the assumptions of Theorem 1 we have

151 €
ID%]g, + 18" a5 —57 O-

Due to Proposition 3.2—(5), (3.11) will be satisfied as soon as we have a hold on the
continuity constant on £°: we need the linear operator £° to be a a contraction in X%. As
can be seen from Proposition 3.2-(4) along with (3.7) and (3.9), for that to be the case
one needs gi, to be small, which we do not assume here.

In order to get around this difficulty, we shall apply Lemma 3.1 iteratively on small
time intervals. Note that due to Proposition 3.2-(4) and (3.7), there is a constant C' > 0
and g > 0 such that for all € < gg

1
€
125z < Cl ANl (3 + 1970y + Iall H%Lg) :

T
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Now thanks to (3.3) and (3.8) there exists K > 0 and times t; :=0 <ty < --- <tg =T
such that
1

VisisK-1, ||g||z4([ti,ti+1];H$L%) + ||g||L2([ti,ti+1];H§L%) s 4C

Then in particular

1
(3.13) I g, < 50,

Applying Lemma 3.1 on [0, t2] implies that there is a unique solution ¢° to (3.10) in &%,
which satisfies

(3.14) 6%z, < Co(Dfu + 118l ) —57 0,
with thanks to Proposition 3.2—(2)

1_
(3.15) Df =gl 3  +I|Pq inl + 7Py il aers -

2L 213
Then we solve (3.10) on [t2, t3]. We recall that (3.10) writes
Vt € [to,t3], 0°(t) = D°(t) + S°(t) + L7[6°](t) + L°[0%, 6%](¢),

with D¢, 8¢ and L defined in (3.12). We want to recast this equation in a form suited to
a fixed point on [t2,t3]. According to (2.1) and since U® is a semigroup, we can write for
all t > to

WIS g)(0) = S0 t2) [ Ut — )T m(F),9(¢))

L R O (), a())

e Jis
= U= 1) [ Ut )T ) A + 0L g)210).
We also define the operator
Lo[f1(t25t) = UFg", fl(ta; 1)

and we set

D5(t) :=D=(t) — U (t — t2)D"(t2)
and

S5(t) :==8°(t) — US(t — t2)S°(t2) .
Then (3.10) can be recast on [to, t3] as follows:

0°(t) = US(t — t2)0°(t2) + D5(t) + S5(t) + LF[6°])(t2; 1) + WE[0°, 0%](t2; 1) .

Thanks to Proposition 3.2-(1), (2) and (3), D5 and S5 go to zero in X, 14 With for some

universal constant C

13
D5l

< G1Dj;,
with notation (3.15), and

£ 1_92q .

||82||X[6t2at3] < Gie (I)<||gm||Hz%L%>'

The linear operator £°[0%](t2;t) is dealt with exactly as above to produce similarly to (3.13),
for € small enough,

I,
Finally thanks to Proposition 3.2—(1) and (3.14), we have for some universal constant Cy > 0
that . i

Ut~ t2)5(t2)

£
to,t3

1
< = e
<5

tg,t3]

| S IP%lxg, + 1187,

1_
< Cy[Df, +227 % <||gm||H;L2> ]

x Hoy
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We can therefore apply Lemma 3.1 which implies that

16| xe Co(IIUa('—t2)58(t2)Hx[§

[to,t3]

+ 1P|

[ta,t3]

+ 115l )

< Cp(Cr + Cy) [Dfn + 55720‘@ (”gln” 2L2> ]

,t3

Iterating this argument K times and noticing that K is of the order of

K(9) = lollzg sz + 191, 3,

we find that there is a unique solution §¢ € X% to (3.10) on [0, 7] which satisfies for some
universal constant C' > 2

e < OK©@) | e 120 .
Il < €9 D5y +-<b20 (gl 1y )| 50

Theorem 1 is proved. O

4. SOME RESULTS ON THE OPERATORS U® AND V¢
In this section, we provide useful continuity estimates on U¢, W€ and I'.
4.1. Estimates on U® and ¥¢. The first series of estimates (Propositions 4.1, 4.2, 4.4
and Corollary 4.3) are very close to the ones established in [14] (and in [31]) and are based
on hypocoercive energy estimates (see Appendix A for a presentation of hypocoercivity

results). Since the functional framework is a little different, we reformulate them in our
functional setting. Some key elements of proofs are provided in Appendix A.

Proposition 4.1. Let m > 0 and T > 0. There holds:
(1) Let f € H™L? and assume f verifies (1.13). Then

WO ANz oz + IPOU= O Fll 2z + - HP “Oflezmp s S 1z

and moreover U (t) f verifies (1.13) for allt >0
(2) Let S = S(t,z,v) satisfy PoS =0 and S € LTHm(H *), then for any t < T,

/ v -tswar| HPO / U=(t — ) S(¥) dt

P0 / US(t — £)S(t') dt’

LZHML?

L2 HmHs’* SJ EHSHL%‘H;’I(Hi’*)/ .
T "z v

From [31, Lemmas 4.8 and 4.9] we also have estimates for the semi-group U®*F.

Proposition 4.2. Let m > 0 and T > 0. There holds:
(1) Let f € H'L2, then

1
10O e 2 + N0 O gz S 1l -

(2) Let S = S(t,x,v) satisfy S € LAH™(H>*)". Then for any t < T,

t t
/ UsH(t —t")S(t') dt’ / USH(t —t)S(t') dt’
0 0

L HIL2 L2 HpHy™
S 5||S||L%H;"(Hf,‘*)’ :

From the two previous propositions, since sy, is such that Pol'syr, = 0, it is straight-
forward to deduce the following result.
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Corollary 4.3. Consider m >0, fi, fa2 such that Usym(f1, f2) € LAH™(HS*)" for some
given T > 0. Then, there holds:

191, ol g + POELA, Folli s

+ 2 [Pewes

L2 S I Tsym (Frs )l 22 prn ey

and
1
T2 [f1, fa] e e + gII‘I’S’”[fl, flllzzamazs S Wsym (F1 f2)ll 2 mrm razey -

The above statements show that there is some kind of smoothing effet in the velocity
variable after time integration. However there is no such effect in the space variable in
general, except when it comes to the operator U  as shown in the following straighforward
estimate for UsP.

Proposition 4.4. Let m > 0. For any f € H™L? there holds
b
WU Oz S g -
4.2. Refined estimates on V°. We recall that as introduced in Section 2
(4.1) Ve = %P 4 ot
In what follows, we give estimates on W& and W&+,

Proposition 4.5. Consider T > 0 and m € R. For any smooth enough functions f;
and fa, we have

b
(42) ||\II€, [flan]HZ%OH;nL% S HFsym(flan)Honngle% )
b
(43) ||\II€7 [fl?f?]”f%oH;”L% S, HFSym(fth)HZ%ﬂH;"*%L% ’
and also
b
(4.4) (N4 [flvfﬂHL%H;"Hi’* S Hrsym(flaf2>HL2TH;”’1(H5’*)/'

Proof. Recalling (2.15), for any k € Z3, there holds

WD fy, ol (1K)

L)y [ E R R (), £0) ()

< k *€{NS,heat,wavet}

Due to the form (2.4)-(2.5) of A« and to the fact that PoI'sym = 0, there is a constant A\ > 0
such that

[w= i, i m,
< |k|x (‘5"“')/0 —lk[2(t—t")
+5|7<?’2X(ﬂ) /Ote—mm?(t—t')
< Jklx (E| ’)/0 Nk ()

(é’)fsym(flv o), k)HL% d¢’

732(51{5)f‘sym(flv f2)(t,7 k) HL2 dt/

(,Z,) Lsym (f1, fo)(t, k)HL% d¢

(Ek)fsym<f17 f2)(t/7 k) HL2 dt/
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where we used that ek lies in a compact set to get the last inequality and where P! and P?
are bounded from L2 into L2 uniformly in €|k| < k. We then have

HPl(W) Com (1 ) B) |, + P2 am (1, )R],
S sym(frs f) (8K )l -

We denote A(t', k) := Hfsym(fl, f2)(#', k, )| L2, and we use the fact that Young’s inequality
in time implies L1 x L C L to estimate

— t ,
1211, (a5 | [ e OO A )

SIETAC R s
T

Therefore we obtain

192 1 Folll e e S || (D71 A

f2L°° ~ ||Fsym(f1af2)”Loon 1L2 3

which concludes the proof of (4.2). Using instead Young’s inequality in time L4T/ 3*L4T C LF,
we also obtain

— t 3 . 9 1
e A I U Bl

S HlIkl~2 AC,
T

from which we deduce (4.3) arguing as before.

For the L% estimate (4.4), we observe that P! and P? are bounded from (Hg*)' into HS*
uniformly in |k| < k. Therefore we obtain, denoting B(t', k) := ||fsym(f1, )@ ks ) sy
and using Young’s inequality in time L} x L2 C L%, that

S k7B

— t ,
(e N I R O3 -

We then conclude the proof of (4.4) by arguing as before. Proposition 4.5 is proved. O

We now give an estimate on U&# that will be useful when both entries are macroscopic.

Proposition 4.6. Consider T' > 0 and m € R. For any smooth enough functions fi
and fo we have:

[T f1, f2]||Z§9H;"L2 S EllTsym(fro F2) Iz ez

Proof. We first write for any k € Z3,

|=4141, £2)R)

¢ ~
0 ‘Us’ﬁ(t —t, k)sym (f1, f2)(t,’ k)HLZ a

HL;OL% € L

Using then (2.10), we deduce that

<1

~

|=4111, £2) k)

)

L

t t—t
/ e_AO 62
0

and thus Young’s inequality in time yields

Com(f1 )¢, 1), aF

HL%?L%

H‘T’E’ﬁ[fh fa](k

sym(fly f2

HLOOL2N ‘ HL%OL%'

This concludes the proof of Proposition 4.6. ]
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4.3. Nonlinear estimates. We now provide nonlinear estimates that are central to
estimate the nonlinear collisional operator I' in various functional spaces. It is well-known
(see [38] for cutoff Boltzmann, [36, 2] for non-cutoff Boltzmann, [37] for Landau) that

[(C(f1, f2), f3d | S Wfalleall foll s 15l s

from which we obtain

(4.5) ICCs F) ey = sup (T(f1, f2) d) ez S N Allezll foll g -

[ HHs *<1

Proposition 4.7. Let m > 0. For any 1,72 # 3/2, any p1,q1,p2,q2 € [1,00| that are such
that 1/p1 +1/q1 = 1/pa+ 1/q2 = 1/2, and any smooth enough functions fi, fa there holds:

IT(f1, f2)HL%H;"(HS’*)’ S "f1”E?1H$+(%7TI)+L% Hf2HZqT1H;1H57*

+ “f1||Z?2H;2L% ||f2||zg?H;n+(%—T2)+H5,* :

Proof. To simplify we write Fy (t, k) = || f1(t, k, 2 and Fa(t, k) = | fa(t, k, gz By (4.5)
we have, for any k € Z3,

G 0y S { [ (S Fale k- mEste,m) o)

nez3

ol

and applying Minkowski’s inequality yields

P )093 ey < z{/ Byt k- ) \Fg(t,n)|2dt}2.

nezs
We now follow [46, Lemma 7.3]. We first split

T f2) () 2z S Ta(k) + T2(k)

with
4 2 2 ?
B) = 3 e § [ BT = m)P Bt ) dt
3 0
neZ
and
4 2 2 ’
k)= > i<kl / [F1(t,n)[*[Fa(t, k —n)|” dt
3 0
neZ
We now estimate the term I;. Thanks to Holder’s inequality in time, we obtain
(4.6) L(k) S D2 Yapepni |1 FLCo k=)0 | F2 (o) s,

nezs
where 1/p1 + 1/¢1 = 1/2. To simply notation we introduce Fj(k) = ||F1('7k)HL§1
and Fo(k) = || Fa(-, k)||LqT1 By the Cauchy-Schwarz inequality it follows that

Ii(k) S 11 Fallezze) { Y Lnj<fpny(n) 2 Fa(k — n)Q}

nez3
where we recall that 1 # 3/2. Multypliying I;(k) by (k)™ then taking the square and
summing it gives
DR LR SN Pallpzsy D2 D Linjsti—nl (B)*™ (n) 7 Fi(k — n)?.
kez? kE€Z3 neZd

Using that 1‘n|<|k_n|<k)2m S Lpnj<jp—n|(k — n)?™, the above sum can be bounded by

> { > 1|n<n'|<n>_2”} (ny*m Fy(n)?

n'€Z3 \ neZ3
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and we observe by standard arguments that
—2r < <n/>3_2r1 if r < %,
Z 1|n\<\n/|<n> ~ 1 i S 3
TLEZ3 1 7“1 5 .

This implies
3_p
S (R 11 (R) S 117 Fal oo ()™ G0 F
kez3

— 2 2
- Hfl |’Z§1H$+(%7Tl)+[/% "f2”Lg}H;1HS’* .
The term Iy can be estimated in a similar fashion, by exchanging the role of f; and fo.

Indeed, we first apply Holder’s inequality in time with 1/ps + 1/g2 = 1/2 to obtain
(4.7) L(k) S > Yalegp—n IFLC )22 [ Fa( k= n)l| 22
nezs
Denoting Fi (k) = || F1(-, k)HLIj:Q and F5(k) = || Fa(-, k)HLqu, the Cauchy-Schwarz inequality
yields

2

L(k) S 1) Fillezs) { D Lnjcipony(n) "2 F(k — n)z} :
nezs

Arguing as above, it follows

Z <k>2m[2<k)2 S HleZZg?HTQL%HfQH’szqu;”“'(%—’?HH )

x S,%

keZ3 T v
which completes the proof. O

We give another estimate on I' in the specific case where both entries are macroscopic
(which in particular implies that there is no loss of regularity in the velocity variable).
Proposition 4.8. Let m > 0. For any smooth enough functions f1, fo we have:

(1) For any ri,r2 # 3/2 there holds

||F(P0f17P0f2)HZ%OH;nL% Sz ”Pof1||z%oH;n+<%*T1)+L%HPOfQHZ%"H;IL%
+ HPOfluz?H;QL% HPOf2HZ%°H;n+<%7T2)+L% :

(2) For anyri,re # 3/2 and p1,q1,p2, g2 € [1,00] such that 1/p1+1/q1 = 1/pa+1/q2 = 1/4,
there holds

I Pof1, Pofo)llzs prynrs < ”POfl”ZI;IH;”“%*’WLg”POfQHEquHPL%
+ HPOfIHZg}H?L%“POfQ“Z%QH;n+(%—T2)+L% :

Proof. Using the regularization properties of Py, thanks to [56, 16] respectively for the
noncutoff Boltzmann and Landau equations, and the fact that [|(v)PPo¢| e S [Po¢l| 2
for all p,q > 0, we have

(4.8) IT(Pof1,Pofo)llzz S [IPofillez(Pofallzs -
Therefore we have for any k € Z3,
IT(Pof1,Pofo)()llzeerzs S D IPofi(k = n)ll1ze 12l Pofo(n)l g2 -
nezs
We then conclude the proof of (1) as in the proof of Proposition 4.7. The proof of (2) is

similar by writing

ITPof1,Pofo) (F)llzszz S D Lp<i—niIPofilk =)l o r2lPofa(n) | pon 12

nez3

+ > Lip—niznlPof1(n)ll 2 2 [IPof2(k = n)l o2 2
nez3
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and then arguing as in the proof of Proposition 4.7. O

5. THE EQUATION ON ¢°: PROOF OF PROPOSITION 3.2
This section is devoted to the proof of Proposition 3.2.

5.1. Continuity estimates for U¢. Let us prove Proposition 3.2—(1). From Proposi-
tion 4.1 we have

NUS(-—t)F ()HLOO L S EPIFONmg »

and

0= OF Ol SIF o

Let us turn to the L2 norm in time. First we note that

éUs(' —O)F ()| 2 HLHS™ S N 5ﬁ+2HF( )HHﬁL%v

&b

—|P

\/g [t,T)
and

—||PaUS(- - t)F(t F(t :
ﬁ” o U (- =) F( )HL[2 T o SVelF@)l whis
We now decompose PoU = PoUs* 4 PoUs” as in (2.8). By Proposition 4.2-(1) we get

EBHPOUE’W' — ) F(t )”L2 o HEHS” S 51+’BHF( )HHﬁLga

and also

IPU#(- = t)F(1)] 3 .. SellFE@]

L2 H2ZHS* ™

3 .
2
- HZ2L2

Furthermore, Proposition 4.4 yields

EIPU (= OOF Oz peme S IF @) ez

it,T]

as well as

P U (- — )F(t F(t .
[PoU’(- — 1) ()IIL[Q ]HQHHNII ()IIHZ%L%

Gathering the previous estimates and using that 5 < 1/2 and ¢ > 3/2, it follows that
IUS(- = F @)l x

SEUFONigrz + VEIFDI g, +IF Ol T IFON
S ey + WPt 51

This concludes the proof of Proposition 3.2—(1).
5.2. Contribution of the data D¢. Let us prove Proposition 3.2-(2). Recall that

(5.1) D*(t) = (U°(t) — Unsr (1) Pofi + US(H)Pg £, -
Let us first prove that

.
(5.2) [(U=() = Uxse () Pofiall p. S €2 Hgi“”HéLg :

We start that by recalling that by (2.8) and (2.11) there holds
(U*(t) = Unse(D)Pofi = (Usr + Ugidve + U (P £, -
We notice that since Pofs, is well-prepared, then US?, (t)Pof5, = 0 so
(Uksr + Usive + U (0)Po 5, = (Ugsp + U ()P f5,
Let us start by considering U%#(t)Pq f5,. Thanks to Proposition 4.2—(1) we have

100 Po Sl s S ElPoSillpss
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for any m > 0. To deal with the L norm in time, we shall follow the arguments of [27]
(see in particular the proofs of Lemmas 3.3 and 3.5). We notice as in [9, Lemma 6.2] that

veinf = U0 f = O[F (1 v () Y Puew) k)

*€{NS heat,wavet}

so in particular

Us’ﬁ(t)Poff}l=Us(t)[fx1<(Id—x(5|:’))—€lklx(iH) > %k))ﬂ(k)].

*E€{NS,heat,wave+}

The H™L2-norm of the first term in the right-hand side can be estimated using

(5.3) \x(ik’) —1| S elkl

and thanks to the fact that the projectors Py are bounded from L2 to L2. The same holds
for the terms coming from the second part of the right-hand side, so we find that

HUE’ﬁ(')POfiEnHZtooH;nL% S ellPofiull gmerpz-

Using this estimate, along with Proposition 4.2—(1) and Remark 4 and the constraints
on «, B and ¢, we deduce that

e |lUS(-) Py ﬁlllz?oHﬁL%Jr\[HPéU”()Po allzmemss + < IPoUS ()P0 fill 2 e

SRR gy + (773 477 IPofill ey

< (61+ﬂ—a<€+%) n e“%“““‘%)) | ginl

v

1
5§_O‘HgmH

as well as
USH(PofE |- PLUS()P + [|PoUSH ()P f£
USROS, fu FUSHOPOSEN 5 IPOUOPOREN g

S (We+e) HPo H
1
< £27%qg.
€2 ”gmHHx%L
We conclude that
(5.4) [U=*(-)Po f]

1
35—
e2"%|g; H
mn
Xgo v

Now let us turn to Uggp(t)Pof5, as defined in (2.11). By construction it is made of three
terms, defined in Fourier variables by

—

Otap(t, k) = Die(t, k) + TS5 (1, k) + D20 (1, k)

— (- () > ()

*€{NS,heat}

W) 5 s

*€{NS,heat}

+x(%) S MWE [Pk + 2 kPPA(ER)] -

*€{NS,heat}
We shall study the three contributions in turn, starting with ﬁﬁgF (t). We recall again

that the projectors P! are bounded from L? to L? and from H3* to H:*. Using the fact
that Pof, is mean free which implies that there is no contribution to & = 0, and the
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fact that the integral in time of the exponential term provides a factor |k|~2, we have for
any m = 0,

=~ 2 -~ clk 2| — 2
[[oENE1 L0 P D DI DI (O Rl O X(U)) [Posik )],
- *€{NS,heat} keZ3\{0} v
Using (5.3) and the fact that |[Pof||gs+ < [Pofl[z2, we get

1
- I 2 \°?
|0XEE Pl 2 s S € (Z ()2 |Po £ (k, ->HL2) S elPofilliprs

kez?
Similar computations give
||UN’gF PO HLoonLQ N5||P0f1n||Hm+1L2 .
Therefore, arguing as for obtaining estimate (5.4) for the term US*, we also get

(5.5) 0R&r (PO Sl S llamll, -

Next we turn to Ulfllsiﬂ( t). We write

k t
(S0

k Vx
§X(L‘ |)e £t
K K

S e_%‘k‘%dk:] .

The same argument gives

HU&lS% POmeLOOHmL2 + ”Ulillsi“ POmeLQHmLQ ~ 5||P0fm||Hm+1L2 .

We can then again argue as in the case of the bound (5.4) to deduce

(5.6) TRk () Po £,

1_
v SNl )

The computations for Ulf%%( t) are very similar: we find

(57) ||U1i]25}b? POfll’lHXE §52 aHglnH 2L2 .

Putting together the estimates on ﬁlfISF( HPo fL, ﬁNSF( t)Po f, and U ( VPo fi, gives (5.2).
Recalling (5.1), it remains to prove that

(5.8) U= (0)Py fillxe. S € IPT Fillie sz + IPo fEl

1
2
H; v

From Proposition 4.1-(1), we have

lU=(t)Py H inll, 4

1

HZL?
as well as

1
FIPSU ORI, 1 SVEIRSARIL 5
Similarly,
BHUE PO fln”LooHZLQ ~ IBHP flanIeL2

and

HP S PTE|PY filless -

Al
i 2 17l f7S0*
inllL2 HEHS

It remains to control POUEPO in LQTHJTHS* for m = £ or m = 3/2. From the decomposi-
tion (2.8), for any k € Z? and t > 0, we have

1T, K)Pg fall o2 S elkle ™ 4 ez,
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Using that Py is bounded from L2 into H* and that PgPg = P, we obtain

BT (-, )Py fias (k)| 2y < €lIPo Fia (k)22

We thus deduce

[P (PR fill IPSFill 5,

%S*N
Hi Hy

as well as

ﬁ"POUE( )P meL2 HLHY™ N ‘SB—HHPO fln”Hle :
Gathering the previous estimates and using that /z||Pg /5 || < PPs Ll merz ends

the proof of (5.8). The estimates (5.2) and (5.8) together give Proposition 3.2—(2).

3
2 2
Hj

5.3. Contribution of the source term S¢. In this paragraph, we are going to prove
Proposition 3.2—(3). We recall that

S°(t) = ¥¥lg", o°J(t) — Unsr[g®, 97](2) ,
and we want to prove that
187125 < 5@ (lgall )

for a nonnnegative increasing function ®. We recall decompositions (2.13) and (2.16). We
can further expand ¥ by writing

(59) \I,Eb \I’NSF + \I’ F + \I’El b + ‘1161 b + \1,62 b

wave

where writing W, [f1, f2](t) = Fo (W[ f1, f2](t)) and recalling that Pol'sym = 0,

Unsrlfi, ol(tR) = > /0 “”’f'ﬂkwﬂ(f;) Coym (f1(), fo(t)) (k) dt',

*€{NS,heat}

Bk, fol (8, F) = (X(<f’:\) _ 1)
k

« Z —u*|k\ (t—t') ‘k|P1<|k|

*€{NS,heat}

=x()

t ic 2 ko
[ el i) Pl e (e )sym<f1<t'>,f2<t’>><k>dt’,
0 ]

\Ijglb[fl,fQ t, k’ X( ) Z / (Ficee|k|—vse?|k|? )

*€{NS,heat,wavet}

" ( (t— t)“/*(elk\) B 1)|k‘|’Pl(|:’) sym(fl(t/)>f2(t/))(k) dt/,

)Ty (1), o)) () dt

\Ilslb [fla

wave

%M

5201, o)t ) = x ()

K

t t—t! ~
Y[ P ek B (50, ) ()

*€{NS,heat,wavet}

We have used the notation ¢, := 0 if x € {NS, heat} and ¢, := c if ¥ € {wavex}. So let us
write

(510)  S7(t) = (W + Unsr + U + Vil + U7+ U [, 67 1),

and let us estimate each term separately. We start with the first term in (5.10).
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Lemma 5.1. There holds
1
1955057, ¢ Nls. S € 2I0G 0 e g + €3 P IT (6 0 sy
+¢[[I'(¢%, 9°) 3, HVEIT (G, )l

~ 3 .
HL;OH; L2 LEZHZ (Hy™)
Proof. From Proposition 4.6 and Corollary 4.3 we have directly that

B
ixnz Tz

1
S DS 0 e gy + (777 + €77 ) DG 9) 2 e oz

55”‘1’8’”98796]” ”Pé‘lﬁ’ﬁ[98>98]||L2TH£H5’* + 55“P0‘I’8’ﬁ[98>QS]HL?THgHs’*

and
1°%[g%, g7l 3 +LHP3‘I’E’ﬁ[g€795]H s PV g7l L s
LxHZLZ € L2HZHY L2.HZ HY*
<€F€,E~7+E+€FE,€ 3 7
SN N 3, + (VE IG5
and we conclude the proof by gathering these estimates. O

Before looking at the other contributions, let us remark that from (5.9), for k = 0, we

have
Welg%, ¢°(1,0) = ¥=¥[g%, ¢°] (£,0),

it is thus enough to analyze the other contributions in (5.10) for k € Z3?\ {0} i.e. for
k| > 1.

For the term WL in (5.10), we follow the arguments of [27, 14]: one needs to exploit
the oscillations of the phase by integrations by parts in time. Thus with notation inspired
from [27, 14] we define

Hi(t,t x) = F,* <x(
so that after an integration by parts in time

Wiavelo®, o°1(8, k)

wave

elk]

—u oy 2 AP
) et 1L (VG 0B

||

t . L - - i ,\
=3 ﬁ( / M O HE (¢, ¢, k) A — HE (¢ 1, k) + eSS HE (8,0,k))
T ic 0

Let us define

— clklN e rt oleli=t (L2 k =~
(5.11) J5.(t, k) ::X(’H‘)ic/g oiclk| 25 —vaves (=) K] pv{]avei<m)at,r(ga7gs)(t/’k)dt/

and
(5.12) I5(t k) == EL2 [o°, oF) (¢, k) — Ta(t, k),

wave
which will be estimated separately.
For the term I7 we have:
Lemma 5.2. There holds

1
1755 S 2100 0% e ez + 227 (D007 0 g s gy + W05 950 ey

+¢llT(¢°, 9°) ,tVeE <HF(95,95)H

v

1> €
" ur<gin,gm>uH§(Hsy*)/> |

[ 3
LXHZL L2HZ (HS™)

Proof. Since Pl .. is bounded from L2 into L? as well as from (Hg*) into H3*, we
obtain from [14, Proof of Lemma 6.5] that, for all ¢ € [0,7] and k € Z3\ {0},

— t / ~
T2t R)lzg S 2 [ ke o= (g2, )¢ )1

~ o 2~
+elT(g%, 67t k)l + e =T (g, g5) (R) 2
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and
— t ~
Tt k) e S e [ bRt OWR (g 67) () eyt
v O v

~ _ 2~
+elT(g%, 6%) (&, B) | gy + e =0 T (g2 g2 ) (k) rsey:

We recall that k # 0. Applying Young’s convolution in time Lix LS C L and, respectively,
LY % L3. C L3, we therefore obtain

IZ (k)12 S €l (97, 6°) (k) e 2
and
Hfi(kWLQTHS’* S elll(g% g9 ) (Rl 2, sy + el (g5, gi) () sy
This implies

8
€ 1
fﬁHIin%oHﬁLg + 7\/C:HPO I\l 2 memy + €% IPoIL 2 pre s

1
S D 0 e g + (2277 +277) (T 9 2 mrgamzry + I (9500 95 gy )

as well as
1
El. 1 +—=|PgI: s 4 ||Pols 3
M0 g+ P e+ TPOE,
< € € € € € 6
SellT(s, 9 >”Z%0H§Lg + (Ve +e) (HF(g .9 )\IL%H§(H5,*), + IIF(gm,gm)lleg(Hi,*)) :
Lemma 5.2 is proved. ]

Recalling the definition of J§ in (5.11), we have the following result.
Lemma 5.3. There holds
1
HJiHX§ S 51+ﬁ“Fsym(gav ath)HEOTOHﬁ*QL% + <C52+BHFsym<987 8tga)”L%Hﬁ’2(Hi’*)’

+5||Fsym(gsaatge) -3 5 + \/gHFsym(gEaatga)

HZ%"HI L HLQTH;%(HS’*)’ '

et is bounded from L? into L? as
well as from (H2*)" into HS* to obtain that, for all ¢ € [0,7] and k € Z3 \ {0},

Proof. Starting from (5.11), we use the fact that P}

— t ’ 2 _ ~
[ JE ()l 2 56/0 k|2 vearet (ORE 512119, (g%, 6°) (', k)| 12 A’
and
_ t Nz o~
T2 Rz S & [ k2 omes R k2007, g) (¢ B ey 0

Using Young’s inequality for convolutions as in the proof of Lemma 5.2 together with the
fact that 9,I'(¢%,¢°%) = ['(01g°, ¢°) + I'(¢°, Org®) , we thus deduce

ITE(t W)l 2ze 2 S elk| 2 Doy (97, 0rg™) (k)| e 12
and

ITE () 2z S €lkl I Toym(9®, 0eg™) (B) 2. sy -
These two inequalities imply

B
€ 1
€5HJin%oH£L3 + 75HP0 Iil 2 ez + € IPoJEN 2 sy

1
< 51+ﬂ||f‘sym(g€,3tg€)||Z%OH£_2L% + (52+5 + ew) IPsym (9% Oe9°) | 2 g1ty
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and also

HJj:H~ 1 é_Ji” +IPoJLll ,

3
2 S, 2 8,%
s H " Hy

P
S EHPsym(g , Org® )H~ -3 (\[‘i‘g) HFsym(g org°) ||

i rp Ry
Lemma 5.3 is proved. U
The contributions of the terms ‘I/f\jls’%, Yelb and U2 in (5.10) are easier to obtain.
Lemma 5.4. There holds
1R (9% 07 ez + 10107, g + 11927, 9] s
S (S 0 e g + 7 PIT O 97 g gy
+6HF(95,9‘€)IIZ%O +Ve[T(g%, g7

1
272
x v

3 .
L2.HE (H"Y

Proof. Recall that Pl .
Let t € [0,7] and k € Z*\ {0}. Remarking that

k
]x (5") - 1\ < min (1,e[k])

K

is bounded from L? into L? as well as from (H$*)" into H3*.

we obtain that, where we denote vy := min(vns, Vheat) > 0,

t / 2,
15 10°, Ry S & [ k2= (g%, )¢ )1
and
~ t ’ 2,
[R5 010 g S & [ k20 g, g7) () gy

Using that

N e S R e R G i
K ~ K ~ K

we also get, denoting v1 = min(vNs, Vheat, Ywavet) > 0,
1951167, g7 K12 < g/ Jef2e= T EREIT (7, g°) (¢, ) | 2 A,
and
H{IC’EI’b[gg,gg](t, k)HHf,* < €/075 |k|2ef%(t—z‘/)|k|2”fw(geygs)(t’7 k)”(Hi’*)' de'.
Finally, observing that
X(iﬂ)@—u*ﬂkﬁﬁv*fz’”dk’z < X(6|:|)6V2*tk2€‘k|2 < €|k|2x<8|:‘)€?t|k|27
we also deduce
197210, g7t k) 12 S & / [kf?e 2 COMET (g7, 67) (¢, B) | 2 ',
and
H(I;/al,b[gayga](t, )l Sg/ot‘kyze—?(t—t’)IkIQHf(ga’ga)(t’,k)H(Hg,*), dt’.

The term W&’ is treated in the same way using the boundedness properties of P2(ck)
uniformly in €]k| < k. We can then conclude by arguing as in the proof of Lemma 5.2. [
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We can now gather the contributions of Lemmas 5.1, 5.2, 5.3 and 5.4 to conclude the
proof of Proposition 3.2—(3). We first observe that from Proposition 4.8, since Pyg°® = ¢,
we obtain

and from Proposition 4.7 we have
IT(g% %)l 2 HE(HY™ Y S HQEHZmHeLzHgEHL? HAL2:
T T gty T

Moreover from Proposition 4.8 again, we obtain

€ € < 5
T 2L P S g P e

and thanks to Proposition 4.7 again, we also get

T < _ .
L 2L P S L g

By Proposition 4.8 there holds
I 06 e azey S alre -
and
€ af <
L R T IO T I
Therefore estimates (3.3) and (3.7) together with Lemma 5.1 yleld

1 — _ 1_
(513)  104g%, Fllaz S (702U 42 gy exp <C||gin|21 )
HZ2IL2 H212

Moreover, estimates (3.3) and (3.7) together with Lemma 5.2 and Lemma 5.4 yield

1 b b
5 . + 119k [9% 07 Lz, + 19507, 0%l e + 1926, 07l 2
LiB—2a(0—1 1_ 2 9
(5.14) < (52 B=2a(6=1) | .3 a) Il gin || %LQ exp <C||gin||HéL%>

—1
+( FHB-20(l-3) | .32 )HgmH s

v

It only remains to investigate the contribution of the term J5, and we recall that 3/2 < ¢ < 2
We write

L UL Yol M
< Ty (% 06 e 21
S HgaHf%oHéL% ”athHfggL%Lg

thanks to Proposition 4.8, and also

HFsym(957ath>HL2TH§f2(Hg’*)/ + HFsym(gaa org°) ||

S Psym(9™s 097 12 213y

S0z 2906 21215

_1
L%—,HI 2 (H’iv*)/

using Proposition 4.7. We now observe from (NSF) that, for all ¢t > 0 and k € Z3,
007 (8, k)] S (K[ (2, )] + [ | (9 (8, ) = 55 )) (R)| -
We hence compute
2
HathHz%oLiL% < HgEHZ%oH%L% + 11(9°) HZ%"H;L% :
Arguing as in the proof of Proposition 4.7, we have

1099 Iz pr1 12 S oIl H2L2||9 Ize 22
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and thus
10e97 5o 212 < <1 + IIgEIIZ%OHéLJ 191 Zee 11212 -
Similarly we obtain
2

10eg° | 22 2222 S 19722 2z + 1(9°) N2 mrs

then we get, as in the proof of Proposition 4.7,
O Py IO [ ey

and finally
) g ”L2 H2L? -

Therefore estimates (3.3) and (3.7) together with Lemma 5.3 yield

"Ji||Xf~ 5 (El—a(ﬁ—&-l) _'_é-%—ozﬁ)

2 2
X | g; 1+ |gi e C|lg; .
”gmHHI%L% ( Hgm”HéL%) Xp < ”gmHHéL?)

Finally gathering (5.13), (5.14) and (5.15) provides (using the restrictions on «, ¢)

|05 |23 1202 S (1 Il

(5.15)

(5.16) 150z < 272 (gl 3. )

where ®(z) = C(1 + 2)22e“%* and we have used the conditions on « and ¢. We hence

obtain Proposition 3.2—(3).

5.4. Estimates on the linear term £°]-]. In this paragraph we prove Proposition 3.2—(4).
Consider f € X7.

5.4.1. Linear estimates: high reqularity. First we have, from Corollary 4.3 and Proposi-
tion 4.7 and using additionally the fact that ¢ = Pqg® and HS* C L2,

1, 1

ZIPe Y Lf g M 2 e + g\l‘l’s’ﬁ[f, 92 mems-
S lsymlf, ge]HLf,Hg(H;“*)'
Sz aems N9z pre s

We then write PoWe = Po0e + PoWs”. We compute, thanks to Proposition 4.5 and
Proposition 4.7,

1921, 2
S ||Fsym[P(JJ_fa QE] + Fsym[POf7 g€]||L§Hﬁ—1(H5»*)/

1
FIPEA 4 e iz

i
S Py f||L§H§;H5’* ”!JEHZ?O 2 TeoHZ L3

1
2
T

1 el el
I g N gy + TP0Sy oI g

I x

+ HPOfHZ?O : %HQEHL%,{L?]
1
SIPH flspngne 2o+ WPt 0
1
I b o N g+ PO 1L2||Pof|! A P
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where we have used the interpolation inequality (3.8) as well as the fact that

Hg HL‘X’HZ 1+0L2||P0 f” 50 g +”g ||L°°H[ 1L2”P f“

II_I:D2 H’U LQHI%HS’*
< Ilg%Il+ '
S 9%z s 12| P fHLin%Hi’*'

Therefore we get

B
€ 1
7§HP0 VLS g 2o s + 7| PoTe(f, 9 W2 me s~

S Az VElo  po e + \[HP o /2y Velg® ”~OOH2L2

1
+ [If1I~ gl 21z + \fll o/l

°°H2L2 2”9 ||Z?°H£L%

2H2Hé*

1
+ 62 HPOfHLooH[LQ ||P0f||[2/%H£H3*HgEHZAILH}:L% :

We now investigate the E?" norm by writing

Ve[f,9°] = V[P f, o] + UH[Pof, g7] + U [Pof, ]
From Corollary 4.3 and Proposition 4.7 we have

n €L
NPy 9 W a1y S & 10y P f 97 sy

1
S HP f”L%HﬁHﬁ’*Eﬁ||g€HZ?OH£L12)

since 5 < 1/2. Moreover from Proposition 4.6 and using again that 5 < 1/2, we have

EBH\IIE711 [P0f7 gs] HZ?"H!EL% S €B+1HFSYH1[POJC7 ge] HZ?"HﬁL%
S €ﬁHPOfHE?oH£L12)8ﬁ”gEHZ?OHﬁL% :

Applying Proposition 4.5 and Proposition 4.8—(2) together with interpolation inequal-
ity (3.8), we get

b
U Pof g Wz ery S MomlPof g,y
1T v

S 8B||P0f||Z?oH£L% HgEHZAIlH;L% + 56||P0fHZ}1H%L%ng”z?oHﬁL%

gﬁHPOfHZ?oHﬁL% HgEHZAIlH%L%

1 1
Pof|2 Pof|? = :
+ H OfHZOOH%LQH OfHLzH% 25 Hg HL?"H%L%

I T Hv I Hu
Gathering the previous estimates and using the fact that 5 < 1/2 finally yield

8
B Pe NN - i PJ_\IJE 5 s B Powe c .
— e’ [f,g]HL?ngL%Jr\@H o UL 2 + €7 IPoYELL, 6 2 e s

SIS les (2197 o e gz + € N9 N rmens + 197 zapy 1) -
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5.4.2. Linear estimates: low regularity. We have from Corollary 4.3 and Proposition 4.7,
as well as from Proposition 4.5,

Pe , € B + \Ija,b ’ 5
T AR s [

1
5 ”FSYm[PO fvge] "‘Fsym[POf’ ]HLQHQ Hs *)

SIPafil, g Mol o +IPo Sl ||g |

Hg Hy LYHZL2

v L‘;‘JHx L2H2L2
+ ||P0 fHL%Hz%_OHS *Hg ”L°°H2+OL2

1P gy e 19 g+ IPOSI I3
where we have used that that g° = Pog® and H3* C L2. Therefore we obtain, using (3.8),

+ 1= 1£, 971l

€ 3
1041, g ]nycHéLg o e
<
1 9 T2 PED s VRIS,
2 2 1>
+ ||P0f||%oo 1 2HPOJC||22 3 MHQ ||Z%H%L3-
I T v Iz v
Moreover, still from Corollary 4.3 and Proposition 4.7,
PyO(f Il , 5 o FIEHA S, g
T [ T [
<
S <ATn P67+ TownlPof o5
< 6H:PO f” H HS*Hg ||L°°HZL2 +€||P0f|| HS *Hg ||L°°HZL2 .

T

This implies

1 1e €
\ﬁHPo‘If el =y ”N\[HP f|| 3 o ellg® HLOOH[LQ

U v

and also

et 5 3 e _
HPO\I’ [f7g ]HLQHQHQ,k ~ f“PO f” H.g7*‘€2”g HL?"H:{L%

+ [IPof
L

€
3 "~oo Lr2
?sz s LHLL;

Putting together the previous estimates provides

\IJE,€~ PJ_\IIE7€ —I-P\IIE,E 3
L0t PRV s PO

(5.18)
S Il (ﬂlg Iz mers + 19 Wz py s + 19" ”Lszp) .

5.4.3. Conclusion. Gathering estimates (5.17) and (5.18) concludes the proof of Proposi-
tion 3.2—(4) since § < 1/2.

5.5. Estimates on the nonlinear term U¢[.,:]. In this paragraph we prove Proposi-
tion 3.2-(5). Consider f; and fa € A}.
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5.5.1. Nonlinear estimates: high regularity. Corollary 4.3 and Proposition 4.7 imply, using
that HS* C L2,

1 1
gIIPé‘I’s[fh folll Lz mewrs~ + gll‘l’e’ﬁ[fl, folll L2bre prz
S MW Csymlf1s folll L2 e sy
S Wl e ol Pollizagny= + 1 f2ll 2 e 1 Foll poe e -
Moreover from Proposition 4.5 and Proposition 4.7, we get

H‘Ija’b Lf1, fﬂ”L%HﬁHﬁ’* S Wsymlf1, /2] HL§H£*1(HS’*)/

< £~ ,
S illzeo e 2 1 £ e ||le~ Z%LvlllelL;HgHj»*
+ Hf1|| . Hs*HfQHLooHélg + HleLQH‘H“‘HfZH Ferdi

We now turn to the L7° norm and we decompose

e[ f1, fo] = U°[Pg f1, Py fo] + V¥ [Py f1,Po fo] + V[P f1, Py fo
+ U [Py f1, Po fo] + U5 [Po f1, Po fo) -
Thanks to Corollary 4.3 and Proposition 4.7 we obtain

”\IJE[PO fl)P f2”|LOOHZL2 ~ HFsym[PO f17P0 f2]HL2HZ Hy™)

S HP(J)_fIHZ?oHﬁLgHP(J]_fQHL%HﬁHf,’* + 1Py fill 2 e s

P(J)_fQHZ?OHﬁLgv
moreover . N
H\IIE[PO f17P0f2]Hf}>oH£L12) 5 HFSym[PO f1; POfﬂ”L%Hﬁ(Hﬁ’*)’
1
S HPO fluLiHﬁHS’*HPOfQHZ?oHﬁL% )
and also N N
1 [Pof1, Py folllzee ez S IPsym[Pofr, Py folll L2 e gy
S HPoleLooHeLQHP foll L2pre sz -

Moreover from Proposition 4.6 we have
19 #[Pof1, Pofolllz e 2 S ellsymPosf1, Posfolll oo e
I v
SJ EHPOfl ”Z?OHéL% HPOfQHZ?oHﬁLg .
Applying Proposition 4.5 and Proposition 4.8-(1) we get
||‘1’5’b[P0f1,Pof2]|’z?oH£L% S IPsym[Pofr, Pofolllzee o1
S ”Pof1||z?oH£L%||P0f2||Z?OH%L2 + HPOlez?o

T Hv

b P02z

Gathering the previous estimates, we finally deduce

'B”‘I’E[flafz]HLoonLz + \[HP(J)_\I’E[foQ]HL?Hng,'* +EB”PU‘IIs[fhf2”|L§H£H5’*
S fullaes || f2ll 2z -

5.5.2. Nonlinear estimates: low regularity. We first compute thanks to Corollary 4.3

H‘I’E[foQHL 1+ ST Py fo] + T, Pofel + Dlf2, Py fi] + T f2, Pofil

1
HiL LIHG (Hy™)

(5.19)

and

Liwet i, )

1
Z||Py e
EH 0 [fl’fﬂHL%Hx%Hi’* c L%HQC%HS*

ST, Py f2] + Dlf1, Pofal + T f2, Py f1] + Tf2, Po fi]|

3 .
LIHZ (Hy")
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From Proposition 4.7 we get

If1, Py fo] + T[f1, P
ICLf1, Py fo] + T f, OfQ]HLQHx%(HZ’*)’

< ||f1H~OOH%+oL2HP Pl s o
+ P ~ + ~ |P
(5.20) 141, || of2ll- i1} 1 £l .3 %\ 0f2||L2H2HH
1
< gz BB ~ Pt
Se? (E HleLOOHﬁL%) (\/>HPOf2HL2H2H >
AL g Pl g ALy Pl
< HZHY L?OHI L2H2 HY

Moreover we also obtam

L[f1,Pg fo] + T[f1, P :
IT[f1, Py fo] + T f1, sz]HLQH%(Hj’*)’

S oo PR o 1 g g IPS 21
+||f1HL§§ HP0f2HL°°HéL2+Hf1H E L%HPoszZ;ngLg’

from which we deduce

Ve|T[f1, Py f2]+r[f1,Pof2H|L

3
S (13

L AT (ﬁ“’o f2”L2H%HSv*>
-tz v

3-8 8 ~
A (IR0 e s ) -

v

Furthermore Proposition 4.5 yields
WP fy, Llf1,PEfo] + T4, P
[ 1 f2]|\L§HngS* S ITf1, Py fo + TLA 0f2]||L2H%(HS,*),

+ [T f2, Py f1] + T f2, Pofi]]] QHQ(HM) :

We can then use (5.20) to bound T'[f1, Py f2] + L'[f1, Pofo] in L%HE (H*)'. Gathering
the previous estimates, and observing that the terms I'[f2, Py f1] and T'[f2, Pof1] can be
handled in a similar way, we thus deduce

(5.21) H\I}E[fl’fz”h HEL2 \/\\Pol‘llg[f1,f2]|!

S ||f1||X;||f2||X;
since 8 < 1/2.

5.5.3. Conclusion. The bounds obtained in (5.19) and (5.21) yield the continuity estimate
given in Proposition 3.2-(5).

£
L§H§HS’* + [[Po¥e[f1, f2]HL§H§H5’*

APPENDIX A. HYPOCOERCIVITY

It is well-known, see for instance [22, 37, 51, 6, 50|, that the linearized Boltzmann and
Landau collision operators satisfy the following coercive-type inequality

(A1) (Lf, flrz < —)\2HPoLf”§{5’* ;

for some Ay > 0.

For all € € (0,1] and all k € Z3, we recall that /AXe(k) is the Fourier transform in space of

1
the full linearized operator — L — —v -V, , namely
€ €

(A2) Re(h) = é(L v k).
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We now state a hypocoercive result for /A\a(kz) (for a detailed presentation of the subject,
we refer to [10] and the references therein, we also point out the papers [56] and [24] in the
case of the whole space), as presented in [14, 15].

Proposition A.1. There is an inner product ((-,-)) 2 on L? (depending on k) such that
the associate norm || - || 2 is equivalent to the standard norm |- || 2 on L7 with bounds that

are independent of k and e, and there exists A3 > 0 such that for every f satisfiying (1.13)
and all k € 73, there holds

N SN 1 N N
Re(®2 ()70, 0z <~ (S 1PSFR) By + IPOFOIE)
Proof. For every k € Z3, we define

Ylf1, fo(k) = égikg[m)] - M[Pg fa(k)] + <(/il>iz k0L F2(k)] - MPg i (k)]
+ 5.@2;2(% ® ulfi(k)])>™ : {@[Péﬁ(k)} + 0o Id}
+ ko ul) ™ {O[PE ()] + o1 1a)
+ kol Fi] - ul ()] + kol )] ulfi(h),

with constants 0 < 03 < 2 < §; < 1, where Id is the 3 x 3 identity matrix and the
moments M and © are defined by

ulf)= [ gooP-sbyde, el [ fev -l )d,

and where for vectors a,b € R? and matrices A, B € R3*3, we denote

) 3
(a®b)>™ = i(a]‘bk +arbj)i<jk<s A:B= Z AjrBiji .
j7k:1

We then define the inner product ((-,-)) 2 on L? (depending on k) by

(A-3) (fr(k). (kD) = (fr(k), fa(k)) 3 + e ¥ fr, fol (R)

and the associated norm

(A4) IF )72 == (F k), FR)) r2 -

We then argue as in [56], the only difference being the factor ¢ in the second term
of (A.3). O

Using this hypocoercivity result, we are able to prove Proposition 4.1.

Proof of Proposition 4.1.
o (1) Let f(t) := U®(t) fin for all ¢ > 0, which satisfies the equation

(A'5> atf = E%(L —EU - Vx)fv f|t:0 = fin .

We already observe that f(t) verifies (1.13) thanks to the conservation properties of I' (and

hence of L). Taking the Fourier transform in space of the above equation, we obtain that f
satisfies

(A.6) Onf (k) = AR F(R),  F(R)j=o = Fin(k)
for all k € Z3. Applying Proposition A.1 yields, for all ¢ > 0,

5 PRI, = Re(Re(R)F(R), k) s

1 ~ ~
<= (FIPSFBIe- + [PoF IR )
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which implies

. 1 st . t .
7R+ 5 [ IPS Tt + [P0 R, S 1 Fu(R) I

where we have used that || - [|z2 is equivalent to || - [[z2 independently of k and e. Taking
the supremum in time and then multipliyng by (k)™ yields

mi| T <k>2m n m I m
EY IR Loz + == IPTF Rz + (B) PO (B2 S () 1 Fin (R)IIZ -
We conclude by summing in k.

e (2) Denote
h(t) == /t Us(t—t)S()dt
which is the solution to '
(A7) yh — E%(L—av-vx)h—kS, —
Taking the Fourier transform in space gives
(A.8) Ouh(k) = N (k)(k) + S(k), - h(k)jemp =0,
for all k € Z3. From the definition of (A.3) and the hypothesis PyS = 0, we observe that
(S(k), Bk 1z = (S(k), A(k)) 1z + €[S, h] (k)

= (k). P (1) + = holR (1) - MIP S(0)
0ot ~ ~
sym . 1
Ty W(k @ ulh(k))™™ : O[PFS(k)].

Observing that for any polynomial p = p( ) we have

1L, 3wt @) dv| S IS0 ey
we get

VLS. A S P Sy s PR3

By duality, we also have

(S(k), Pyh(k)) 2 S NS sy PG R(E) | s
therefore gathering previous estimates yields
(A9 (S0) Bz < SR ey (ZIPTR g + [PoR(B)12)

Using Proposition A.1 and arguing as in the proof of Proposition 4.1-(1) we have, for
allt > 0and all k£ € Z3,

1 ~ ~
5 IR < =X (S IPSRM) By + IPOR(IE, )
. 1 N N
(A.10) +<CIS®l gy (ZIPFAO g + BBz )

By - -
<-2 ( SIPE AR |2 + HPoh(k)\%g) + CEISR) P ey

where we have used Young’s inequality in last line. This implies

IR + 5 [ PR R e + [ [PRE R a7

t
<52/ St k)26, At
se ) IS R ey
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Taking the supremum in time and then multiplying by (k)?™ yields

Ry (R 3o 2 +

<k>2m

IR R(R) 2 g5 + (0™ [PoR(R) 25,5

< R I8(R) 23 gy

and we conclude by summing in k. Proposition 4.1 is proved. O
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